de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Martin, Christian: Visual data mining in intrinsic hierarchical complex biodata. 2009
Inhalt
Introduction
Chapter overview
Machine learning algorithms
Hierarchical Agglomerative Clustering
Spectral Clustering
Normalized cuts
Future Perspectives of spectral clustering
Self-Organizing Maps
SOM types
SOM classifier
Topology Preservation for SOMs
Topographic error
Quantification error and distortion
Trustworthiness and Discontinuities
Measures based on correlations of distances
k-nearest neighbor classifier
Data
DNA Microarray technology
Intensity-dependent normalization
Visualization
Sequence and taxonomic data
DNA sequence data
Sanger sequencing
454 Pyrosequencing
Nanopores
Genetic material used in this thesis
Taxonomy
Cluster Validation
Internal cluster indices
intra- and inter-cluster variance
Calinski Harabasz Index
Index I
Separation
Silhouette Width
Davis-Bouldin index
Dunn's index
C Index
Goodman-Kruskal Index
External cluster indices
Cluster validation bias
Stability of clustering results
The Tree Index
Methods
Results
Simulated data
Real-world Cancer data sets
Theoretical considerations
Tree structures and leaf orderings
Different scoring methodologies
The probability of a split
Cumulative hypergeometric distribution
Discussion
Outlook
Normalized Tree Index
Methods
The Normalized Tree Index (NTI)
p-value
Results
Discussion
Fusing biomedical multi-modal data
SOM-based sea bed rendering
The fish glyph
Application
Mapping
Results
Summary and Discussion
Taxonomic classification of DNA fragments
Feature vector computation
Normalization
Results
Feature selection
Discussion
Reassessing the tree of life
Material and methods
Results
Summary and discussion
Conclusion
Future prospects