de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Naumov, Alexey: Universality of some models of random matrices and random processes. 2012
Inhalt
Introduction
Universality in random matrix theory
Empirical spectral distribution
Ensembles of random matrices
Methods
Universality in the strong law of large numbers
Structure of thesis
Notations
Elliptic law for random matrices
Main result
Gaussian case
Proof of the main result
Least singular value
The small ball probability via central limit theorem
Decomposition of the sphere and invertibility
Uniform integrability of logarithm
Convergence of singular values
Lindeberg's universality principe
Truncation
Universality of the spectrum of singular values
Some technical lemmas
Semicircle law for a class of random matrices with dependent entries
Introduction
Proof of Theorem 3.1.6
Truncation of random variables
Universality of the spectrum of eigenvalues
Proof of Theorem 3.1.7
Strong law of large numbers for random processes
Extension of the Brunk–Prokhorov theorem
Strong law of large numbers for martingales with continuous parameter
Analogues of the Kolmogorov and Prokhorov-Chow theorems for martingales
The strong law of large numbers for homogeneous random processes with independent increments
Some results from probability and linear algebra
Probability theory
Linear algebra and geometry of the unit sphere
Methods
Moment method
Stieltjes transform method
Logarithmic potential
Stochastic processes
Some facts from stochastic processes
Bibliography