de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Szufnarowski, Filip: Dynamic modeling and bioinspired control of a walking piezoelectric motor. 2013
Inhalt
Acknowledgments
List of publications
General abstract
1 Introduction
1.1 Motivation
1.2 Objectives of the thesis
1.3 Outline of the thesis
MODELING PART
2 Fundamentals of piezoelectric technology
2.1 Introduction
2.2 Piezoelectric effect
2.2.1 History of discovery
2.2.2 Modern piezoelectric ceramics
2.2.3 Linear theory of piezoelectricity
2.3 Piezoelectric motors
2.3.1 Classification
2.3.2 Ultrasonic motors
2.3.3 Quasistatic motors
2.4 The walking piezo motor
2.4.1 The walking principle
2.4.2 Walking motor construction
3 Physical model of motor dynamics
3.1 Introduction
3.2 Leg kinematics
3.2.1 Piezoelectric bending beam
3.2.2 Driving waveforms
3.3 Leg dynamics
3.3.1 Single leg z dynamics
3.3.2 Single leg x dynamics
3.3.3 Hysteretic nonlinearity
3.4 Motor dynamics
3.4.1 Motor z dynamics
3.4.2 Motor x dynamics
3.5 Parameter optimization
3.6 Discussion
4 Gray-box identification of motor dynamics
4.1 Introduction
4.2 Gray-box modeling
4.2.1 Static unloaded behavior
4.2.2 Static behavior under load
4.2.3 Linear dynamics
4.3 Discussion
CONTROL PART
5 Bioinspired generation of optimal driving waveforms
5.1 Introduction
5.2 Leg coordination rules
5.3 Trajectory generation
5.4 Parameter optimization
5.5 Discussion
6 Frequency matching in waveform generation
6.1 Introduction
6.2 Waveform generating electronics
6.3 Continued fractions approach in frequency matching
6.4 Discussion
7 Dynamic load compensation and force control
7.1 Introduction
7.2 Feedback load compensation approach
7.3 Force control
7.4 Discussion
APPLICATION PART
8 Muscle-like actuation of an antagonistic joint
8.1 Introduction
8.2 Virtual muscles
8.3 Antagonistic joint architecture
8.4 Position control scenario
8.5 Discussion
9 Discussion
9.1 Contributions of the thesis
9.2 Future work
A Appendix A
B Appendix B
B.1 Bézout's identity
B.2 Euclidean algorithm and continued fractions
B.3 Algorithmic solution to Bézout's identity
C Appendix C
D Appendix D
D.1 Bond graphs
D.2 State equations of the sensor-tendon complex
List of figures
List of tables
Bibliography