de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Hermann, Reiner: Monoidal categories and the Gerstenhaber bracket in Hochschild cohomology. 2013
Inhalt
Abstract
Zusammenfassung
Acknowledgements
Introduction
Background
Methods and results
Outline
Conventions
Chapter 1. Prerequisites
1.1. Exact categories
1.2. Monoidal categories
1.3. Examples: Exact and monoidal categories
Chapter 2. Extension categories
2.1. Definition and properties
2.2. Homotopy groups
2.3. Lower homotopy groups of extension categories
2.4. n-Extension closed subcategories
Chapter 3. The Retakh isomorphism
3.1. An explicit description
3.2. Compatibility results
3.3. Extension categories for monoidal categories
Chapter 4. Hochschild cohomology
4.1. Basic definitions
4.2. Gerstenhaber algebras
Chapter 5. A bracket for monoidal categories
5.1. The Yoneda product
5.2. The bracket and its properties
5.3. The module case – Schwede's original construction
5.4. Morita equivalence
5.5. The monoidal category of bimodules
Chapter 6. Application I: The kernel of the Gerstenhaber bracket
6.1. Introduction and motivation
6.2. Hopf algebroids
6.3. A monoidal functor
6.4. Specialization to Hopf algebras
6.5. Comparison to Linckelmann's result
Chapter 7. Application II: The Ext-algebra of the identity functor
7.1. The evaluation functor
7.2. Exact endofunctors
7.3. Ext-algebras and adjoint functors
7.4. Hochschild cohomology for abelian categories
Chapter 8. Open problems
Appendix A. Basics
A.1. Homological lemmas
A.2. Algebras, coalgebras, bialgebras and Hopf algebras
A.3. Examples: Hopf algebras
Bibliography