de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Schoening, Timm: Automated detection in benthic images for megafauna classification and marine resource exploration: supervised and unsupervised methods for classification [...]. 2015
Inhalt
Abstract
Publications
Acknowledgements
Contents
List of Tables
List of Figures
Acronyms
Principles and Background
1 Introduction
1.1 Ocean exploration
1.2 Curse of dimension
1.3 Adding semantics
1.4 Computer Vision for the Deep Sea
1.5 Scope
1.6 Contributions
1.7 Notation
1.8 Overview
2 Benthic imaging
2.1 Video acquisition
2.2 Camera platforms
2.2.1 Towed systems
2.2.2 Autonomous Underwater Vehicles
2.2.3 Remotely Operated Vehicles
2.2.4 Lander and Crawler
2.2.5 Others
2.3 Light and colour
2.3.1 Illumination
2.3.2 Effect of water on light
2.4 Quantification of image content
2.4.1 Modelling of the camera platform
2.4.2 Laser points
2.4.3 3D methods
2.5 Filtering for analysable images
3 Pattern Recognition
3.1 Digital Images
3.2 Feature Descriptors
3.2.1 Colour and intensity
3.2.2 Histograms
3.2.3 Gabor wavelets
3.2.4 MPEG-7 descriptors
3.2.5 Blob descriptor
3.2.6 SIFT/SURF
3.3 Feature metrics
3.4 Feature normalisation
3.4.1 ... by length
3.4.2 ... by feature
3.4.3 ... by feature group
3.5 Feature selection
3.6 Unsupervised Machine Learning
3.6.1 k-Means
3.6.2 Self-Organising Map
3.6.3 Hyperbolic Self-Organising Map
3.6.4 Hierarchical Hyperbolic Self-Organising Map
3.7 Supervised Learning
3.7.1 k-Nearest Neighbour
3.7.2 Support Vector Machines
3.8 Other methods
3.8.1 Genetic Algorithm
3.8.2 Bag of features
3.9 Quality criteria
3.9.1 Cluster indices
3.9.2 Item-based classifier statistics
3.9.3 Matching items
3.10 Training data division and parameter tuning
4 Annotation
4.1 Annotation in image space
4.1.1 Small object instances
4.1.2 Line annotations
4.1.3 Large object instances
4.1.4 Regular Tiles
4.2 Annotation in other spaces
4.2.1 Feature Vectors
4.2.2 Cluster prototypes
4.3 Re-evaluation
4.4 Annotation software
4.4.1 BIIGLE
Scenarios and Contributions
5 Colour normalisation
5.1 Artefact removal
5.2 Data-driven colour normalisation fSpice
5.2.1 Parameter tuning
6 Laserpoint Detection
6.1 DeLPHI
6.1.1 Web interface
6.1.2 Training step
6.1.3 Detection step
6.1.4 Application
7 Megafauna detection
7.1 Initial dataset
7.1.1 HAUSGARTEN observatory
7.1.2 Expert workshop
7.2 Semi-automatic detection of megafauna
7.2.1 Manual annotation of POIs with BIIGLE
7.2.2 Creation of annotations cliques
7.2.3 Colour pre-processing with fSpice
7.2.4 Feature extraction at POIs
7.2.5 Feature extraction in a ROI
7.2.6 Feature normalisation
7.2.7 Training set generation from cliques
7.2.8 SVM trainings and parameter tunings
7.2.9 Classification of ROI features with SVMs
7.2.10 Post-processing to derive detection positions
7.3 Results
7.4 Re-evaluation
7.5 Multi-year assessment
7.6 Other methods
7.6.1 Random Forests (RFs)
7.6.2 SIFT and SURF features
7.6.3 Feature selection
7.7 Other data sets
7.7.1 Sponge assessment
7.7.2 Porcupine Abyssal Plain
8 Benthic resource exploration
8.1 Poly-metallic nodules
8.2 Motivation of the applied algorithms
8.3 Data and data preparation
8.3.1 PMN images
8.3.2 Feature computation and H2SOM projection
8.3.3 Annotations
8.4 Bag of prototypes (BoP)
8.5 Pixel Classification by Prototype annotation
8.6 Evolutionary tuned Segmentation
8.7 Single Nodule Delineaton
8.7.1 Speedup
8.8 Results
8.8.1 BoP
8.8.2 PCPA
8.8.3 ES4C
8.9 Summary
Outlook
9 Ideas for the Future
9.1 Further methods
9.1.1 Image normalisation
9.1.2 Feature Descriptors
9.1.3 Post-processing
9.1.4 Black boxes
9.1.5 Imaging hardware
9.2 Further annotation ideas
9.2.1 Annotation morphologies
9.2.2 Annotation strategies
9.3 Marine applications
9.3.1 Other marine resources
9.3.2 Integrated environmental monitoring (IEM)
9.4 Integrated visual programming
10 Conclusion
Appendix
A Further images and visualisations
B Rapid development of high-throughput methods
B.1 The idea behind Olymp
B.2 Infrastructure
B.3 Basic libraries and tools
B.3.1 Hades
B.3.2 Apollon
B.3.3 Ares
B.3.4 Athene
B.3.5 Hermes
B.4 Pan
B.4.1 Zeus
B.4.2 Atlas
B.4.3 Plutos nodule browser
B.4.4 Poseidon
B.4.5 Ate
B.4.6 tinySQL
B.4.7 Spectra
B.4.8 Delphi
B.5 High-throughput
B.6 Outlook
Bibliography
Declaration