de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
di Stefano, Andrea: Random walks interacting with evolving random environments and related kinetic equations. 2015
Inhalt
Acknowledgements
Introduction
One-particle system in a random environment
Phase space of the model
The phase space as a measure space
The K-transform
Algebraic product on phase spaces: -convolution
Correlation measures and correlation functions
Correlation measure of a state
Correlation functions of a state
Random walks in Markov environments
Microscopic description of the model
Statistical description of the model: evolution of correlation functions
Generator for quasi-observables
Generator for correlation functions
Kinetic description of the model: mesoscopic limit
Derivation of Vlasov equations
Examples of Vlasov equations
Random walks in birth-and-death environments
Non-equilibrium evolutions
Evolution of quasi-observables
Evolution of correlation functions
Examples: random walks in a spatial ecological model of environment
Mesoscopic evolutions: Vlasov-type scaling
Convergence of the Vlasov-type scaling
Vlasov equations
Examples: random walks in a spatial ecological model of environment
Random walks in a birth-and-death environment with aggregation
Evolution of correlation functions
Proof of Theorem 4.3
Examples
Mesoscopic evolution: Vlasov-type scaling
Convergence of the Vlasov-type scaling
Vlasov equations
Examples
Random walks in a Kawasaki model of environment via generating functionals
The Bogoliubov generating functionals
Random Walk in a Kawasaki model of environment
Non-equilibrium evolution of generating functionals
Vlasov-type scaling via generating functionals
Ovsjannikov-type theorem
Proof of Theorem 4.2
Biography