de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Strunk, Nils: Critical well-posedness results for nonlinear Schrödinger equations on compact manifolds. 2015
Inhalt
Contents
Introduction
1 Basics
1.1 Notation
1.2 Function spaces and the Fourier transform
1.2.1 Lp-spaces and Sobolev spaces
1.2.2 The Schwartz class and the Fourier transform
1.2.3 The spaces Up and Vp
1.3 Fourier series and exponential sums
1.3.1 Fourier series
1.3.2 Hausdorff–Young inequalities
1.3.3 Lp-estimates of exponential sums
1.4 Riemannian manifolds
1.5 Dispersion
1.5.1 Dispersive equations
1.5.2 The Schrödinger equation
2 Local and small data global well-posedness
2.1 Preliminary remarks
2.1.1 Relevant results on the Euclidean space
2.1.2 Selected results on compact manifolds
2.2 A conditional local and small data global well-posedness result
2.2.1 Sufficiency of the condition
2.2.2 On the necessity of the condition
2.3 Rectangular tori in three dimensions
2.3.1 Selected results
2.3.2 Set-up
2.3.3 Linear Strichartz estimates
2.3.4 Almost orthogonality
2.3.5 The trilinear Strichartz estimate
2.4 Rectangular tori in two dimensions
2.5 Product of spheres
2.5.1 Selected results
2.5.2 Set-up
2.5.3 A trilinear estimate for spherical harmonics
2.5.4 Two exponential sum estimates
2.5.5 Almost orthogonality
2.5.6 The trilinear Strichartz estimate
2.6 Further results on other manifolds and remarks
3 Global well-posedness for large data
3.1 Set-up and main result
3.2 Basic definitions and statements
3.3 Local well-posedness and stability theory
3.3.1 Estimates on the Duhamel term
3.3.2 Local well-posedness
3.3.3 Small data global well-posedness
3.3.4 Stability
3.4 Euclidean profiles
3.4.1 Global well-posedness on the Euclidean space
3.4.2 Connection between solutions on tori and Euclidean solutions
3.5 Profile decomposition
3.5.1 Definition and properties
3.5.2 Extracting profiles from a sequence
3.6 Proof of the main theorem
3.6.1 The main argument
3.6.2 Proof of Lemma 3.31
3.7 Further remarks
Summary
Bibliography