de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Teich, Lisa: Hybrid molecular and spin dynamics simulations of ensembles of magnetic nanoparticles in viscous matrices. 2016
Inhalt
Declaration of Authorship
List of Figures
Publications
1 Introduction
2 Magnetoresistive systems
2.1 Magnetic nanoparticles
2.1.1 Magnetic interactions
Exchange interaction
Magnetic dipole-dipole interaction
2.1.2 Geometric frustration
2.1.3 Magnetic properties of nanoparticle ensembles
2.2 Magnetoresistance and related effects
2.2.1 Giant magnetoresistance (GMR) effect
2.2.2 Interlayer exchange coupling
2.2.3 Granular GMR effect
Measurement of GMR curves of particle-gel systems
2.3 Magnetoresistive sensor systems
2.3.1 Multilayer GMR sensors for biomolecule detection
2.3.2 Granular GMR biosensors on the basis of magnetic nanoparticles in conductive gel matrices
3 Basic simulation methods
3.1 Classical spin dynamics
3.1.1 Magnetic macro moment approximation
3.1.2 Classical equations of motion for the spin Hamiltonian
3.1.3 Landau-Lifshitz equation
3.1.4 Heat bath coupling
Ensembles
Langevin approach
3.1.5 Integration of the spin equations of motion
3.1.6 Classical spin dynamics summary
3.2 Classical molecular dynamics
3.2.1 Potential energy functions
Lennard-Jones potential
3.2.2 Particle-particle and particle-matrix interactions in systems of interacting magnetic particles in viscous surrounding media
Magnetic dipole-dipole interaction
Weeks-Chandler-Andersen (WCA) potential
Stokes drag
3.2.3 Force calculation
Neighbor list
Cell computation
All-pairs method
3.2.4 Integration of the translational equations of motion
Euler method
Verlet algorithm
Leapfrog algorithm
Velocity Verlet algorithm
3.2.5 Molecular dynamics at constant temperature
3.2.6 Classical molecular dynamics summary
3.2.7 Reduced Lennard-Jones Units
4 Design of model systems
4.1 Experimental systems
4.2 3D reconstruction of nanoparticle ensembles
4.3 Structure determination by abstraction and downsizing
4.4 Design of model systems summary
5 Efficient calculation of magnetic low energy configurations of nanoparticle ensembles
5.1 Basic relaxation simulations
5.2 Demagnetization protocol
5.3 Comparison of simple relaxation and demagnetization protocol
5.4 Demagnetization simulations summary
6 Hybrid molecular and spin dynamics simulations
6.1 Motivation
6.2 Separation of the magnetic and mechanical degrees of freedom
6.2.1 Mechanical relaxation of magnetic particles in a viscous matrix
6.2.2 Magnetic relaxation
6.2.3 Comparison of mechanical and magnetic relaxation times
6.3 The role of temperature
6.4 Hybrid simulation coupling procedure
6.5 Validation: Hybrid simulation of a particle ring
6.6 Hybrid molecular and spin dynamics summary
7 Hybrid simulation of the model structure AH41 and estimation of its GMR properties
7.1 Hybrid simulation of AH41
7.2 Prediction of qualitative GMR properties
7.3 Hybrid simulation and evaluation of GMR curve of AH41 summary
8 Suggestions for further experimental investigations
8.1 Identification of promising configurations for the development of magnetoresistive sensor devices
8.2 Investigation of three-dimensional structures
8.2.1 Nanoparticle tube
8.2.2 Nanoparticle cube
8.3 Printed containers for magnetic spheres
8.4 Particle positioning via DNA-functionalization
8.5 Encapsulation of magnetic particles in liquid metals
8.6 Suggestions for further experimental investigations summary
9 Conclusion and outlook
A Hybrid molecular and spin dynamics program description
A.1 Input files
A.2 Output files
A.3 Modifications to the spin dynamics algorithm
A.4 Modifications to HOOMD-blue
Bibliography
Danksagung