de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Hofmann, Daniela: Learning vector quantization for proximity data. 2016
Inhalt
Introduction
Vectorial learning vector quantization
Learning vector quantization
Generalized learning vector quantization
Robust soft learning vector quantization
Abstract formulation
Discussion
LVQ for proximities
Kernel GLVQ
Kernel RSLVQ
Pseudo-Euclidean embedding
Relational GLVQ
Relational RSLVQ
Discussion
General view
Optimization concerning the coefficients
Optimization concerning the prototypes
Characteristics of the methods
Transferability of the mathematical background
Techniques to enforce that data are Euclidean
Experiments
Discussion
Efficiency
Nyström approximation of the Gram matrix
Nyström approximation for LVQ
Quick check
Experiments
Discussion
Interpretability
Approximation of the prototypes
Sparse training
Simple heuristic approximations of the prototypes
Approximate representations of the prototypes
Characteristics of the techniques
Experiments
Discussion
Conclusions