de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Zordan, Michele: Representation zeta functions of special linear groups. 2016
Inhalt
Introduction
Background and motivation
Main results and techniques
Chapter 1. Background
1.1. p-adic analytic pro-p groups and the Kirillov orbit method
1.2. Commutator matrix and Poincaré series
1.3. Hensel's lemma
Chapter 2. Adjoint orbits in Lie rings
2.1. Shadows
2.2. The action of the kernel
2.3. Action of the factor group
2.4. Intrinsic description of the orbits
2.5. Adjoint orbits
2.6. Centralizer and shadow of a lift
Chapter 3. Special linear groups
3.1. Number of lifts
3.2. The Poincaré series of sl3(o)
3.3. The representation zeta function of SL3m (o)
Chapter 4. Reduction to the Lie algebra over the finite field
4.1. Notation
4.2. Poincaré series for Lie rings with smooth and irreducible rank loci
4.3. Special linear Groups
Chapter 5. The representation zeta function of SL4m (o)
5.1. Non-degenerate Killing form
5.2. Group centralizers in sl4(o)
5.3. Centralizers of dimension 3
5.4. Centralizers of dimension 5
5.5. Centralizers of dimension 7
5.6. Centralizers of dimension 9
5.7. Poincaré series of sl4(o)
Bibliography