de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Dieckmann, Simon: Dynamics of patterns in equivariant Hamiltonian partial differential equations. 2017
Inhalt
Introduction
1 Equivariant Hamiltonian Systems
1.1 Hamiltonian Ordinary Differential Equations
1.1.1 Hamiltonian Mechanics
1.1.2 Rain Gutter Dynamics
1.2 Abstract Hamiltonian Systems
1.2.1 Basic Framework
1.2.2 Hamiltonian Evolution Equations
1.3 Partial Differential Equations as Hamiltonian Systems
1.3.1 Nonlinear Schrödinger Equation (NLS)
1.3.2 Nonlinear Klein-Gordon Equation (NLKG)
2 Analysis of the Freezing Method
2.1 Derivation of the PDAE Formulation
2.1.1 General Principle
2.1.2 Fixed Phase Condition
2.2 Preliminaries and Spectral Hypotheses
2.3 Stability of the PDAE Formulation
2.4 Application to the NLS
2.5 Application to the NLKG
3 Preservation of Solitary Waves and Their Stability
3.1 Motivating Examples
3.1.1 Finite Difference Method
3.1.2 Finite Element Method
3.2 Abstract Setting
3.3 Positivity Estimates
3.4 Existence of Discrete Steady States
3.5 Stability of Discrete Steady States
3.6 Verification of the Hypotheses
4 Truncation and Discretization for the NLS
4.1 Analysis of Boundary Conditions
4.1.1 Separated Boundary Conditions
4.1.2 Periodic Boundary Conditions
4.2 Spatial Discretization
4.2.1 Finite Difference Method
4.2.2 Spectral Galerkin Method
4.3 Split-step Fourier Method
5 Numerical Computations
5.1 Nonlinear Schrödinger Equation
5.2 Nonlinear Klein-Gordon Equation
5.3 Korteweg-de Vries Equation
Conclusions and Perspectives
A Auxiliaries
A.1 Exponential Map
A.2 Lie Group Inverse
A.3 Implicit Functions on Banach Manifolds
A.4 Young's Inequality
A.5 Finite Rank Perturbations
A.6 Lipschitz Inverse