de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Voigt, Paul: Nonlocal operators on domains. 2017
Inhalt
Introduction
Existence and uniqueness of variational solutions
Nonlocal to local phase transition
Homogenization of nonlocal Dirichlet problem
Connection of the three main parts
Outline
Function spaces
Classical function spaces
Sobolev and fractional Sobolev spaces
Asymtotics as s1
Further characterizations of Sobolev spaces
Function spaces with regularity over the boundary
Nonlocal generalization of H1()
Dirichlet forms associated to V(| Rd)
Generalization of fractional Sobolev spaces
Asymptotics for s1 in the generalized setting
Changing the asymptotics
Weighted L2-spaces
Function spaces with a general kernel as weight
Definition and basic properties
Poincaré-Friedrichs inequality
Existence and uniqueness of solutions for nonlocal boundary value problems
Setting
Variational formulation of the Dirichlet problem
Gårding inequality and Lax-Milgram Lemma
Gårding inequality
Application of the Lax-Milgram Lemma
Weak maximum principle and Fredholm alternative
Weak maximum principle
Fredholm alternative
Examples of kernels
Integrable kernels
Non-integrable kernels
Nonlocal to local phase transition
Setting and main result
Gamma-Convergence of the energies
Application of -Convergence
Homogenization of nonlocal Dirichlet Problem
Homogenization of second order elliptic equations
Homogenization for elliptic nonlocal operators
An application of Beurling Deny
Additivity and translation invariance of localized functionals
Open questions in the nonlocal case
Appendix
-Convergence
Definition and basic properties
Convergence of minimizers and compactness of -convergence
Dirichlet forms
Definitions and auxiliary results
Domains
Auxiliary computations
Bibliography