de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Lux, Markus: Efficient Grouping Methods for the Annotation and Sorting of Single Cells. 2018
Inhalt
Titlepage
Zusammenfassung
Abstract
Acknowledgements
1 Introduction
1.1 Motivation
1.2 Metagenomics
1.3 Single-cell genomics
1.4 Flow cytometry
1.5 Structural overview
2 Automatic discovery of metagenomic structure
2.1 Background
2.2 Methodology
2.2.1 Data representation
2.2.2 Dimensionality reduction
Problems of high-dimensional spaces
t-SNE
2.2.3 Cluster Analysis
Clustering algorithms
Clustering evaluation
2.2.4 Binning pipeline
2.3 Evaluation
2.3.1 Data
2.3.2 Dimensionality reduction
2.3.3 Data representation by oligonucleotide frequencies
2.3.4 Clustering algorithms and cluster validation
2.3.5 Application to complex metagenomes
2.4 Summary
3 Single-cell genome contamination detection
3.1 Background
3.2 Methodology
3.2.1 Reference-free detection
Steps 1&2: Data pre-processing and dimensionality reduction
Step 3: Estimating contamination confidences
3.2.2 Reference-based detection
Step 4: Sequence classification
Step 5: 16S rRNA gene prediction
3.2.3 Decontamination
Step 6: Manual cleansing
Step 7: Taxonomy annotation and automatic cleansing
Step 8: Result visualization
3.3 Results
3.3.1 Computational performance
3.3.2 Evaluation data sets
3.3.3 Supervised analysis
3.3.4 Unsupervised analysis
3.3.5 Assessing the purity of metagenome bins
3.4 Discussion
3.4.1 Influence of assembly size and quality
3.4.2 Influence of horizontal gene transfer and repeats
3.5 Summary
4 Identification of flow cytometry cell populations
4.1 Background
4.2 Methodology
4.2.1 Pipeline
1: Input FCM data
2: Density estimation
3: Example gates
4: Alignment and gate transfer
4.2.2 Evaluation measures
4.2.3 Quality checking cell population thresholds
4.2.4 Implementation and computational complexity
4.3 Study design and evaluation data sets
4.3.1 Mice data
4.3.2 FlowCAP data
4.4 Results
4.4.1 Mice data
4.4.2 FlowCAP data
4.4.3 Runtime
4.4.4 Comparison to nearest-neighbor gating
4.4.5 Comparison to DeepCyTOF and FlowSOM
4.5 Discussion
4.6 Summary
5 Conclusion
A Appendix
A.1 Software Availability
A.1.1 Acdc
A.1.2 FlowLearn
A.2 List of genomes used in the NCBI-9 data set
A.3 Results on the CAMI data
A.4 Acdc parameters
A.5 Evaluation of the optimal number of nearest neighbors m
A.6 Description of the simulated data set
A.7 Description of the mix data set
A.8 Results on the FlowCAP data set
Bibliography
Colophon