de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Wurft, Tobias: Investigation of the Magnetic Vortex State for Spin-Valve Sensors. 2018
Inhalt
Table of Contents
Symbols and Acronyms
1 Introduction
1.1 Magnetoresistive Sensors in Automotive Applications - Example Wheel Speed Sensing
1.2 Motivation and Outline
2 The Magnetic Vortex
2.1 Properties of the Magnetic Vortex
2.2 Theoretical Background and Fields of Research
2.3 Energy Analysis of the Vortex State
2.3.1 Energetics of a Ferromagnetic Structure
2.3.2 Energetics of a Micrometer-Sized Disk Structure
2.3.3 Analytical Vortex Models
3 Methodology
3.1 Implementation of the Vortex Sensor Concept
3.1.1 Tunnel Magnetoresistance
3.1.2 Tunneling Magnetoresistance Spin-Valve
3.1.3 Stack and Layout Variants
3.1.4 Device Characteristics
3.2 Experimental Methods
3.2.1 Electrical Characterization of Spin-Valve Structures
3.2.2 Imaging of the Vortex State
3.3 Simulations Methodology
4 Experimental Results - Intrinsic Factors
4.1 Disk Dimensions - Diameter and Thickness
4.1.1 Fields of Research
4.1.2 Lateral Size and Aspect Ratio
4.1.3 Collapse and Estimated Stray Field of the Saturated State
4.1.4 Stray Field Energy of the Saturated State
4.1.5 Thickness-Dependent Nucleation Modes - Simulations
4.1.6 Thickness-Dependent Nucleation Modes - Experiment
4.1.7 Nucleation Modes and the Influence of the Diameter
4.1.8 Symmetry Breaking of the Vortex Core
4.2 Material and Process
4.2.1 Saturation Magnetization
4.2.2 Exchange Stiffness
4.2.3 Magneto-Crystalline Anisotropy
4.2.4 Magneto-Crystalline Anisotropy and Direction of Rotation of the Vortex State
4.2.5 Magneto-Crystalline Anisotropy and Increased Stability of the Double Vortex State
4.2.6 Magneto-Crystalline Anisotropy and Crossed Hysteresis
4.2.7 Magnetically Disturbed Edge
4.2.8 Sloped Edge
4.2.9 Edge Effects in Combination with Magneto-Crystalline Anisotropy
4.2.10 Electrically Inactive Edge
4.2.11 Edge Shape - Discretization and Roughness
5 Experimental Results - Extrinsic Factors
5.1 Processing of Changes of Critical Fields
5.2 Temperature
5.2.1 Initial Expectations
5.2.2 Types of Temperature-Induced Nucleation Field Shifts
5.2.3 Nucleation Modes and Temperature-Induced Nucleation Field Shifts
5.2.4 Magneto-Crystalline Anisotropy and Temperature-Induced Nucleation Field Shifts
5.2.5 Temperature-Induced Annihilation Field Shifts
5.2.6 Estimation of the Temperature-Induced Reduction of the Saturation Magnetization and Thermally Assisted Barrier Jumps
5.2.7 Summary
5.3 Bias Fields
5.3.1 Bias Field-Induced Nucleation Field Shifts
5.3.2 Bias Fields and the Configurational Stability
5.3.3 Bias Fields and Magneto-Crystalline Anisotropy
5.3.4 Wobbling Fields and Nucleation Sites
5.3.5 Out-of-Plane Bias Fields
5.3.6 Summary
6 Summary and Outlook
List of Publications
Bibliography