de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Lunari, Andrea: Numerics and optimal control of phase-field models for multiphase flow. 2018
Inhalt
1 Introduction
1.1 Structure of the Thesis
2 Optimal Control of the Non-Smooth Cahn-Hilliard-Stokes System
2.1 Introduction
2.2 Regularized Optimal Control Problem
2.2.1 Properties of the Regularized State Equations
2.2.2 Well-Posedness of the Regularized Optimal Control Problem
2.2.3 Optimality Conditions of the Regularized Optimal Control Problem
2.3 Non-Smooth Optimal Control Problem
2.3.1 Properties of the State Equations of the Non-Smooth Optimal Control Problem
2.3.2 Minimizers of the Non-Smooth Optimal Control Problem
2.3.3 Optimality Conditions of the Non-Smooth Optimal Control Problem
3 Optimal Control of the Discrete Non-Smooth Cahn-Hilliard-Stokes System
3.1 Introduction
3.2 Regularized Discrete Optimal Control Problem
3.2.1 Properties of the Regularized Discrete State Equations
3.2.2 Well-Posedness of the Regularized Discrete Optimal Control Problem
3.2.3 Optimality Conditions for the Regularized Discrete Optimal Control Problem
3.3 Discrete Non-Smooth Optimal Control Problem
3.3.1 Properties of the State Equations of the Discrete Non-Smooth Optimal Control Problem
3.3.2 Minimizers of the Discrete Non-Smooth Optimal Control Problem
3.3.3 Optimality Conditions for the Discrete Non-Smooth Optimal Control Problem
3.4 Convergence of the Solutions of the Discrete Optimal Control Problem
3.5 Numerical Solution of the Discrete Optimal Control Problem
3.6 Numerical Experiments
3.6.1 Circle to Square 1
3.6.2 Circle to Square 2
4 Optimal Control of the Cahn-Hilliard-Navier-Stokes System
4.1 Introduction
4.2 Properties of the State Equations
4.3 Well-Posedness of the Optimal Control Problem
4.4 Optimality Conditions of the Optimal Control Problem
5 Optimal Control of the Discrete Cahn-Hilliard-Navier-Stokes System
5.1 Introduction
5.2 Properties of the Discrete State Equations
5.3 Well-Posedness of the Discrete Optimal Control Problem
5.4 Optimality Conditions for the Discrete Optimal Control Problem
5.5 Convergence of the Solutions of the Discrete Optimal Control Problem
5.6 Numerical Solution of the Discrete Optimal Control Problem
5.7 Numerical Experiments
5.7.1 Circle to Square 1
5.7.2 Circle to Square 2
A Notations and Basic Results
A.1 Main Notations
A.2 Banach Spaces
A.2.1 General Notation
A.2.2 Sobolev and Bochner spaces
A.2.3 Useful Embeddings
A.2.4 Useful Inequalities
A.2.5 Green's Operator
A.3 Discrete Settings
A.3.1 Discrete Spaces
A.3.2 Interpolation Operator
A.3.3 Mass Lumping and h-Norm
A.3.4 Discrete Green's Operators
A.3.5 Discrete Laplacian and Stokes Operators
A.3.6 Projection Operators
A.3.7 Useful Discrete Inequalities
B Proofs
B.1 Proofs of Chapter 2
B.2 Proofs of Chapter 3
B.3 Proofs of Chapter 4
Bibliography