de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Paaßen, Benjamin ; Artelt, André ; Hammer, Barbara: Lecture Notes on Applied Optimization. 2019
Inhalt
Contents
Introduction
Theory
Basic Concepts of Optimization
Optimization Problems and Formalization
Standard Form
Global and Local Optima
Continuous versus Discrete Optimization Problems
Differentiable Optimization
Gradient, Hessian, and Taylor Expansion
Searching for Optima with Gradient and Hessian
Eigenvalue analysis
Convex Optimization
Definition and Convex Optimization Theorem
Engineering Convex Problems
Duality
Lagrange Dual Form
Duality Gaps
Karush-Kuhn-Tucker conditions
Wolfe Dual Form
Algorithms
Analytical Methods
Unconstrained Optimization
Equality-Constrained Optimization
Inequality-Constrained Optimization
Numeric Methods
Unconstrained Optimization
Gradient Descent
Stochastic Gradient Descent / Adam
Optimizing the Step Size
Conjugate Gradient
Newton's Method
(L-)BFGS
Trust Region Method
Constrained Optimization
The Log-Barrier Method
Penalty Method
Projection Methods
Probabilistic Optimization
Maximum Likelihood
Maximum a posteriori
Expectation Maximization
Belief Propagation and Max-Product-Algorithm
Convex Programming
Linear Programming
Quadratic Programming
Heuristics
Gradient-free Optimization
Downhill-Simplex / Nelder-Mead algorithm
CMA-ES
Bayesian Optimization
Discrete Optimization
Hill Climbing
Simulated Annealing
Tabu Search
Branch and Cut
Ant Colony Optimization
Bibliography
Acronyms
Glossary
Rules for Derivatives and Gradients