de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Gubinelli, Massimiliano; Hofmanová, Martina: Global solutions to elliptic and parabolic $\Phi^4$ models in Euclidean space. In: Communications in Mathematical Physics. Jg.368 H. 3. 2019, S. 1201-1266
Inhalt
2 Preliminaries
2.1 Weighted Besov spaces
2.2 Interpolation
2.3 Localization operators
2.4 Elliptic Schauder estimates
2.5 Elliptic coercive estimates
2.6 Parabolic Schauder estimates
2.7 Parabolic coercive estimates
2.8 Paracontrolled calculus
3 Probabilistic Analysis
3.1 Space white noise
3.2 Space–time white noise
4 Elliptic Φ44 Model
4.1 Decomposition into simpler equations
4.2 A priori estimates
4.3 Existence
5 Elliptic Φ45 Model
5.1 Decomposition into simpler equations
5.2 Including the localizers
5.3 Bound for φ in mathscrC α(ρ)
5.4 Bound for φ in mathscrC 12+α(ρ32+α)
5.5 Bound for in mathscrC 1+α(ρ2+α)
5.6 Bound for ψ in mathscrC 2+γ(ρ3+γ)
5.7 Bound for ψ in Linfty(ρ)
5.8 Existence
6 Parabolic Φ42 Model
7 Parabolic Φ43 Model
8 Uniqueness for the Parabolic Models
8.1 Besov spaces with exponential weights
8.2 Proof of Theorem 8.1
9 Coming Down from Infinity
9.1 Interpolation and localization
9.2 Weighted Schauder estimates
9.3 Weighted coercive estimate
9.4 Proof of Theorem 9.1
Acknowledgements.
A Auxiliary PDE Results
B Refined Schauder Estimates
References