de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Schenke, Andre: Regularisation and Long-Time Behaviour of Random Systems. 2020
Inhalt
Chapter I. Introduction and Motivation
1. Tamed MHD Equations - Deterministic and Stochastic
2. Random Dynamical Systems and Random Attractors
3. Acknowledgements
Chapter II. The Deterministic Tamed MHD Equations
1. Introduction
1.1. Magnetohydrodynamics
1.2. Regularised Fluid Dynamical Equations
1.2.1. Mollifying the Nonlinearity and the Force
1.2.2. Leray- Model and Related Models (Clark-, LANS, …)
1.2.3. A Cutoff Scheme due to Yoshida and Giga
1.2.4. Globally Modified Navier-Stokes Equations
1.2.5. Regularisation by Delay
1.2.6. Lions' Hyperviscosity Method
1.2.7. Navier-Stokes-Voigt Equations
1.2.8. Damped Navier-Stokes Equations (or Brinkman-Forchheimer-extended Darcy Models)
1.3. The Tamed Equations
1.3.1. Physical Motivation
1.3.2. Mathematical Motivation
1.3.3. Review of Results for Tamed Navier-Stokes Equations
1.3.4. The Magnetic Pressure Problem
1.3.5. The Magnetic Field: To Regularise or Not to Regularise?
1.3.6. The Tamed MHD Equations
1.4. Results and Structure of This Chapter
1.5. Notation
2. The Case of the Whole Space
2.1. Auxiliary Results
2.2. Existence and Uniqueness of Weak Solutions
2.3. Existence, Uniqueness and Regularity of a Strong Solution
2.4. Convergence to the Untamed MHD Equations
Chapter III. The Stochastic Tamed MHD Equations
1. Introduction
1.1. Regularisation of Fluid Dynamical Equations
1.1.1. Leray- Model
1.1.2. Globally Modified Navier-Stokes Equations
1.1.3. Regularisation by Delay
1.1.4. Lions' Hyperviscosity Method
1.1.5. Navier-Stokes-Voigt Equations
1.1.6. Damped Navier-Stokes Equations (or Brinkman-Forchheimer-extended Darcy Models)
1.2. Results and Structure of This Chapter
2. Preliminaries
2.1. Notation and Assumptions
2.2. Estimates on the Operators A and B
2.3. A Tightness Criterion
3. Existence and Uniqueness of Strong Solutions
3.1. Weak and Strong Solutions
3.2. Pathwise Uniqueness
3.3. Existence of Martingale Solutions
3.4. Proof of Theorem 1.1
4. Feller Property and Existence of Invariant Measures
Chapter IV. Dynamical Systems and Random Attractors
1. Introduction
1.1. Literature
1.2. Overview
2. Main Framework
3. Strictly Stationary Solutions for Monotone SPDE
4. Generation of Random Dynamical Systems
5. Existence of a Random Attractor
6. Examples
6.1. Stochastic Burgers-type and Reaction-Diffusion Equations
6.2. Stochastic 2D Navier-Stokes Equation and Other Hydrodynamical Models
6.3. Stochastic 3D Leray- Model
6.4. Stochastic Power Law Fluids
6.5. Stochastic Ladyzhenskaya Model
6.6. Stochastic Cahn-Hilliard-type Equations
6.7. Stochastic Kuramoto-Sivashinsky Equation
6.8. SPDE with Monotone Coefficients
7. Existence and Uniqueness of Solutions to Locally Monotone PDE
Appendices
A. Lp Solutions and Integral Equations
A.1. A Divergence-Free Solution to the Heat Equation on the Whole Space
A.2. Equivalence of Weak Solutions to the MHD Equations and Solutions to the Integral Equation
A.3. Regularity of Solutions to the Integral Equation
B. A Note on Vector Calculus
B.1. Gradient of a Vector – Navier-Stokes Case
B.2. Gradient of a Vector – MHD Case
C. Stochastic Flows and Random Dynamical Systems
Bibliography