de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Bosnić, Filip: Models of degenerate random conductances with stable-like jumps. 2020
Inhalt
Introduction
Convergence results
Regularity results
Techniques
Limitations of the method
Outline
Preliminaries
Notation
Inequalities
Bochner integral
Dirichlet forms
Markov processes
Volume regularity of Zn
Symmetric jump type forms
Generalized Mosco convergence
List of properties
Local properties describing jump kernels
Conventions
Deterministic degenerate energy forms of jump type
Assumptions and main ideas
Weak solution and testing lemma
Concept of weak solutions
Testing lemma
Maximum principle
Parabolic Moser iteration
Iteration preparations
Iteration Norms
On the choice of Sobolev inequality
Iteration for negative exponents
Energy estimate
Elementary step
Iteration
Iteration for small positive exponents
Energy estimate
Elementary step
Iteration
Connecting positive and negative exponents
Weighted Poincaré inequality
Energy estimate for logu
Weak L1 estimates on logu
Lemma of Bombieri and Giusti
Weak Harnack inequality
Hölder regularity estimate
Exit time estimates and conservativeness
Estimate of the expected exit time
Survival estimate and conservativeness
Truncation and survival probabilities
Local Poincaré-Sobolev inequality
Abstract inequality
Examples of the inequality
Long-range random conductance model
Motivation and definitions
Definition of random conductance
Dirichlet form property
Random walk
Symmetrized ergodic conductance
Estimates on spatial averages
Functional inequalities in ergodic environment
Energy density of cutoff functions
Weak Harnack inequality and Hölder regularity
Exit time estimates
i.i.d. conductance
Basic estimates
Sobolev inequality
Poincare inequality
Lower estimates on the kernel
Energy density of cutoff functions
Tail estimates
Weak Harnack inequality and Hölder regularity
Exit time estimates
Convergence results
Rescaling
Mosco convergence for symmetrized ergodic conductance
Mosco convergence for i.i.d. conductance
Convergence in finite-dimensional distributions
Tightness in the i.i.d. case