de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Langenkämper, Daniel ; van Kevelaer, Robin; Purser, Autun; Nattkemper, Tim Wilhelm: Gear-Induced Concept Drift in Marine Images and Its Effect on Deep Learning Classification. In: Frontiers in Marine Science. Jg.7. 2020
Inhalt
2.1. Image Data Sets
2.2. Concept Drift Visualization With t-SNE Projections
2.3. ResNet Deep Learning Architecture and Training
2.3.1. Performance Assessment
2.4. Study Design
2.4.1. Experiment A: Intra-set Study (No Concept Drift)
2.4.2. Experiment B: 1 vs. 1 Inter-set Study
2.4.3. Experiment C: Leave-One-Set-Out Inter-set Study
2.4.4. Experiment D: Ensemble Classification Heuristic
2.4.5. Experiment E: Leave-One-Set-Out With Adaption
2.4.6. Balanced Data Set Experiments
3. Results
3.1. Concept Drift Visualization With t-SNE Projections
3.1.1. Experiment A: Intra-set Study
3.1.2. Experiment B: 1 vs. 1 Inter-set Study
3.1.3. Experiment C: Leave-One-Set-Out Inter-set Study
3.1.4. Experiment D: Ensemble Classification Heuristic
3.1.5. Experiment E: Leave-One-Set-Out Inter-set Study With Adaption
4. Discussion
5. Conclusion
Data Availability Statement
Author Contributions
Funding
Acknowledgments
Supplementary Material
References