de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Chen, Bingguang: Large and moderate deviation principle for the two-dimensional stochastic Navier-Stokes equations with anisotropic viscosity. 2021
Inhalt
Preface
Introduction
Stochastic NS equations with anisotropic viscosity
Large and moderate deviations
Small time large deviation principle
Small time asymptotics of 41 model
Structure of the thesis
Preliminary
Function spaces on torus
Large deviation principle
Weak convergence approach
Existence and uniqueness of solutions
Some useful estimates
Small noise large deviation principle
Two equations
Proof of Hypothesis 2
Proof of Hypothesis 1
Central limit theorem
Well-posedness of the limiting equation
Central limit theorem
Moderate deviation principle
Two equations
Proof of Hypothesis 2
Proof of Hypothesis 1
Small time asymptotics
LDP for linear equation
Energy estimates
Approximating the initial value
Exponential equivalence
Small time asymptotics for 41 model
The linear case
Exponential equivalence
Bibliography