de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Wüllems, Karsten: Data-Driven Approaches to Exploratory Visual Analysis of Mass Spectrometry Imaging Data. 2021
Inhalt
Titlepage
Zusammenfassung
Abstract
Acknowledgment
Contributions
Contents
1 Introduction
1.1 Mass Spectrometry Imaging
1.1.1 Formal Definition of a Mass Spectrometry Imaging Data Cube
1.1.2 Matrix-Assisted Laser Desorption/Ionization
1.1.3 Time of Flight
1.1.4 Orbitrap
1.2 Analysis Approaches in Mass Spectrometry Imaging
1.3 Unsupervised Data-Driven Analysis
1.4 Visualization of Mass Spectrometry Imaging Data
1.5 Research Objectives
2 Data
2.1 Barley Seed
2.2 Mouse Kidney
2.3 Human PXE Skin
2.4 Mouse Urinary Bladder
3 Pre-Processing
3.1 Motivation
3.1.1 Dimension Reduction
3.1.2 High Dimensional Data
3.1.3 Using Embeddings to Explore Regions of Interest
3.2 Pre-Processing Pipeline
3.2.1 Alignment & Normalization
3.2.2 Reformatting
3.2.3 Matrix and Artifacts Detection and Reduction
3.2.4 Peak Picking and Deisotoping
3.2.5 Further Modules
3.2.6 Application on Real Data
3.3 Interactive Visual Exploration of Dimension Reduction in Mass Spectrometry Imaging
3.4 Summary and Contributions
3.5 Improvements and Future Research
4 Co-Localization Analysis in the Spatial Domain
4.1 Motivation
4.2 Quantification of Co-Localization of Molecular Distributions
4.2.1 Image Pattern Regularity
4.2.2 Mass Channel Image Features and Representations
4.2.3 Image Scale-Space Representations
4.2.4 Evaluation of Pipeline Setups
4.2.5 SoRC Score
4.2.6 Similarity Functions
4.2.7 Clustering Methods
4.2.8 Application on Real Data
4.2.9 Improvements and Future Research
4.3 Community Detection on m/z-Image Similarity Graphs
4.3.1 Building the m/z-Image Similarity Graph
4.3.2 Interactive Visual Exploration of m/z-Image Similarity Graphs
4.3.3 Improvements and Future Research
4.4 Approximation of Regions of Interest in the Spatial Domain
4.5 Summary and Contributions
5 Comparative Molecular Composition Analysis in the Spectral Domain
5.1 Motivation
5.2 Hierarchical Hyperbolic Self Organizing Maps
5.3 Segmentation Maps
5.3.1 H2SOM Projection
5.3.2 Ring-wise Position Optimization of the H2SOM Grid Projection
5.3.3 Projection of other Clustering Methods
5.3.4 Application on Real Data
5.4 Interactive Visual Exploration of Molecular Composition based Segmentation Maps
5.5 Summary and Contributions
5.6 Improvements and Future Research
6 Combining the Spatial and Spectral Domain for an Interactive and Responsive Analysis
6.1 Motivation
6.2 Interactive Visual Exploration of Molecular Composition Similarity through Spatial Browsing and Pseudocoloring
6.2.1 Efficient Implementation of QUIMBI
6.2.2 Advantages and Limitations
6.2.3 Application on Real Data
6.3 Summary and Contributions
6.4 Improvements and Future Research
7 Conclusion
Bibliography
Symbols
A Appendix
A.1 ProViM Mass Spectra Comparison
Colophon
Declaration
Declaration