de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
ter Horst, Hendrik Roman: Information extraction from text for deep domain knowledge graph population. Extracting pre-clinical outcomes in the domain of spinal cord injury. 2021
Inhalt
Abstract
Acknowledgements
1 Introduction
1.1 Motivation
1.2 Deep Domain Knowledge Graph Population
1.2.1 Simplified Example
1.2.2 Terminology and Notation
1.2.3 Involved Tasks
1.3 Content Overview
1.3.1 Challenges and Research Questions
1.3.2 Contributions
1.3.3 Outline
1.4 Publications
2 Foundations
2.1 Knowledge Representation
2.1.1 Knowledge Graphs
2.1.2 Resource Description Framework
2.1.3 Web Ontology Language
2.1.4 SPARQL Protocol And RDF Query Language
2.2 Conditional Random Fields
2.2.1 Factor Graphs
2.2.2 Inference and Learning
3 Related Work
3.1 Historical Situation
3.2 Related Information Extraction Problems
3.2.1 Entity Recognition and Linking
3.2.2 Relation Extraction
3.2.3 Slot-Filling
3.2.4 Co-Reference Resolution
3.3 Knowledge Graph Population in the Medical Domain
4 Application Domain: Spinal Cord Injury
4.1 Spinal Cord Injury Data-Model
4.1.1 Data-Model Structures
4.2 Real-World Example
4.2.1 Protocol Excerpt
4.2.2 Example Walkthrough
4.3 Data Set
4.3.1 Statistics
4.3.2 Inter Annotator Agreement
5 Model-Complete Text Comprehension
5.1 Conditional Random Fields and Factor Graphs
5.2 Inference and Parameter Estimation
5.2.1 Objective Function
5.2.2 Parallel Chain Cross Model Update Inference
5.3 Sampling from the State Space
5.3.1 Breadth-First Gibbs Sampling
5.3.2 Search Space
5.3.3 Implementation Details
5.4 Feature Engineering
5.4.1 General Aim
5.4.2 Formal Implementation
5.5 Entity and Literal Annotation
5.5.1 Sliding Window CRF
5.5.2 Dictionary Based Approach
5.5.3 Regular Expressions
5.5.4 Intermediate Evaluation
6 Deep Domain Knowledge Graph Population
6.1 Ontology-Specific Problem Modelling
6.1.1 Problem Decomposition
6.1.2 System Architecture
6.2 Special Case: Experimental Group
6.2.1 Group Name Recognition
6.2.2 Group Name Co-reference Resolution
6.2.3 Additional Features
6.3 Special Case: Result
6.3.1 Group Name Multi-Membership Resolution
6.3.2 Investigation Methods and Trends
6.3.3 Evidence-based Inference
7 Experiments and Evaluation
7.1 Evaluation Metrics and Experimental Settings
7.1.1 Metric
7.1.2 Settings and Interpretations
7.2 Experimental Results and Error Analyses
7.2.1 Organism Model
7.2.2 Injury Device
7.2.3 Injury Location
7.2.4 Delivery Method
7.2.5 Anaesthetic
7.2.6 Injury
7.2.7 Treatment
7.2.8 Experimental Group
7.2.9 Trend
7.2.10 Investigation Method
7.2.11 Result
7.3 Discussion
8 Applications
8.1 Annotating Complex Relational Data with SANTO
8.2 System Application: Populating a Knowledge Graph
8.3 Exploration of Knowledge with SCIExplorer
8.4 Answering Competency Questions
8.5 Automated Grading
9 Conclusion
9.1 Summary
9.2 Outlook
9.2.1 Relevance and Adaptation to Clinical Domain
9.2.2 Limitations and Future Work
List of Figures
List of Tables
Abbreviations
A Group Name Recognition Expressions
B Regular Expressions for Literal Extraction
Bibliography