de
en
Schliessen
Detailsuche
Bibliotheken
Projekt
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Ergebnisliste
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Dokument suchen
Pfannschmidt, Lukas: Relevance learning for redundant features. 2021
Inhalt
Contents
Introduction
Motivation
Research Questions
Foundations on Feature Selection
Feature Relevance
Feature Selection
Approaches
Feature Selection Methods for Possibly Redundant Features
Boruta
Feature Relevance Bounds for Linear Models
Summary
Applications of Feature Relevance Bounds
Background
Methodology
Feature Classification
Feature Constraints
Grouping
Evaluation
Data
Selection Accuracy
Interactive Use
Feature Groups
Runtime
Conclusion
Ordinal Regression and the Relevance of Privileged Information
Large Margin Ordinal Regression
Background
Methodology
Evaluation
Learning using Privileged Information
Background
Methodology
Evaluation
Conclusions
Non-Linear Feature Selection and Classification
Background
Methods
Loss-based Feature Set Decomposition
Robust Loss Comparison
Applications of Random Forest Importance Values
Results
Implementation
Benchmark Models
Stability of Feature Importance Values
Parameterization for Feature Selection
Linear Feature Selection Accuracy
Non-Linear Feature Selection Accuracy
Relevance Classification
Conclusion
Conclusion
Appendices
Appendix
Relevance Bounds for Ordinal Regression
Feature Relevance Bounds for Ordinal Regression with Implicit Order
Proof of Generalization Bounds
Proof of Theorem 1
Equivalence of `3́9`42`"̇613A``45`47`"603AminRel() and `3́9`42`"̇613A``45`47`"603AminRel*()
Equivalence of `3́9`42`"̇613A``45`47`"603AmaxRel() and the optimum of `3́9`42`"̇613A``45`47`"603AmaxRel*pos() and `3́9`42`"̇613A``45`47`"603AmaxRel*neg()
Scaling of Ordinal Regression Feature Selection with Privileged Information
Features of the COMPAS dataset
Glossary
Acronyms
Bibliography
List of Figures
List of Tables