Background: Smoking is one of the leading causes of premature death particularly in developing countries. The prevalence of smoking is high among the general male population in Bangladesh. Unfortunately smoking information including correlates of smoking in the cities especially in the urban slums is very scarce, although urbanization is rapid in Bangladesh and slums are growing quickly in its major cities. Therefore this study reported prevalences of cigarette and bidi smoking and their correlates separately by urban slums and non-slums in Bangladesh. Methods: We used secondary data which was collected by the 2006 Urban Health Survey. The data were representative for the urban areas in Bangladesh. Both slums and non-slums located in the six City Corporations were considered. Slums in the cities were identified by two steps, first by using the satellite images and secondly by ground truthing. At the next stage, several clusters of households were selected by using proportional sampling. Then from each of the selected clusters, about 25 households were randomly selected. Information of a total of 12,155 adult men, aged 15 59 years, was analyzed by stratifying them into slum (= 6,488) and non-slum (= 5,667) groups. Simple frequency, bivariable and multivariable logistic regression analyses were performed using SPSS. Results: Overall smoking prevalence for the total sample was 53.6% with significantly higher prevalences among men in slums (59.8%) than non-slums (46.4%). Respondents living in slums reported a significantly (P < 0.001) higher prevalence of smoking cigarettes (53.3%) as compared to those living in non-slums (44.6%). A similar pattern was found for bidis (slums = 11.4% and non-slums = 3.2%, P < 0.001). Multivariable logistic regression revealed significantly higher odds ratio (OR) of smoking cigarettes (OR = 1.12, 95% CI = 1.03-1.22), bidis (OR = 1.90, 95% CI = 1.58-2.29) and any of the two (OR = 1.23, 95% CI = 1.13-1.34) among men living in slums as compared to those living in non-slums when controlled for age, division, education, marital status, religion, birth place and types of work. Division, education and types of work were the common significant correlates for both cigarette and bidi smoking in slums and non-slums by multivariable logistic regressions. Other significant correlates of smoking cigarettes were marital status (both areas), birth place (slums), and religion (non-slums). Similarly significant factors for smoking bidis were age (both areas), marital status (slums), religion (non-slums), and birth place (both areas). Conclusion: The men living in the urban slums reported higher rates of smoking cigarettes and bidis as compared to men living in the urban non-slums. Some of the significant correlates of smoking e. g. education and division should be considered for prevention activities. Our findings clearly underscore the necessity of interventions and preventions by policy makers, public health experts and other stakeholders in slums because smoking was more prevalent in the slum communities with detrimental health sequelae.