Electric impulses are capable of inducing long-lived conformational changes in (metastable) biopolymers. Results of experiments with poly(A)2 poly(U) and ribosomal RNA, which are known to develop metastabilities, are reported. A polarization mechanism is proposed to explain the structural transitions observed in the biopolymers exposed to the impulses. In accordance with this idea, the applied electric field (of about 20 kV/cm and decaying exponentially, with a decay time of about 10 [mu]sec) induces large dipole moments by shifting the ionic atmosphere of multistranded polynucleotide helices. This shift, in turn, causes strand repulsion and partial unwinding. The fields used in our experiments are of the same order of magnitude as those in nerve impulses. The significance of the impulse experiments with regard to the question of biological memory recording is briefly discussed.