In this paper, a novel unsupervised neural network combining elements from Adaptive Resonance Theory and topology learning neural networks, in particular the Self-Organising Incremental Neural Network, is introduced. It enables stable on-line clustering of stationary and non-stationary input data. In addition, two representations reflecting different levels of detail are learnt simultaneously. Furthermore, the network is designed in such a way that its sensitivity to noise is diminished, which renders it suitable for the application to real-world problems.