Principles of saccadic eye movement control in the real world have been derived by the study of self-paced well-known tasks such as sandwich or tea making. Little is known whether these principles generalize to high-speed sensorimotor tasks and how they are affected by learning and automatization. In the present study, right-handers practiced the speed-stacking task in 14 consecutive daily training sessions, while their eye movements were recorded. Speed stacking is a high-speed sensorimotor task that requires grasping, moving, rotating, and placing of objects. The following main results emerged. Throughout practice, the eyes led the hands, displayed by a positive eye–hand time span. Moreover, visual information was gathered for the subsequent manual sub-action, displayed by a positive eye–hand unit span. With automatization, the eye–hand time span became shorter, yet it increased when corrected by the decreasing trial duration. In addition, fixations were mainly allocated to the goal positions of the right hand or objects in the right hand. The number of fixations decreased while the fixation rate remained constant. Importantly, all participants fixated on the same task-relevant locations in a similar scan path across training days, revealing a long-term memory-based mode of attention control after automatization of a high-speed sensorimotor task.