Titelaufnahme
Titelaufnahme
- TitelReservoir computing with output feedback
- Verfasser
- Gutachter
- Erschienen
- SpracheEnglisch
- DokumenttypDissertation
- Schlagwörter
- URN
Zugriffsbeschränkung
- Das Dokument ist frei verfügbar
Links
- Social MediaShare
- NachweisKein Nachweis verfügbar
- IIIF
Dateien
Klassifikation
Abstract
A dynamical system approach to forward and inverse modeling is proposed. Forward and inverse models are trained in associative recurrent neural networks that are based on non-linear random projections. Feedback of estimated outputs into such reservoir networks is a key ingredient in the context of bidirectional association but entails the problem of error amplification. Robust training of reservoir networks with output feedback is achieved by a novel one-shot learning and regularization method for input-driven recurrent neural networks. It is shown that output feedback enables the implementation of ambiguous inverse models by means of multi-stable dynamics. The proposed methodology is applied to movement generation of robotic manipulators in a feedforward-feedback control framework.
Inhalt
Statistik
- Das PDF-Dokument wurde 8 mal heruntergeladen.