Titelaufnahme
Titelaufnahme
- TitelUnsupervised Dimensionality Reduction for Transfer Learning
- Verfasser
- Herausgeber
- Erschienen
- SpracheEnglisch
- DokumenttypKonferenzband
- URN
Zugriffsbeschränkung
- Das Dokument ist frei verfügbar
Links
- Social MediaShare
- NachweisKein Nachweis verfügbar
- IIIF
Dateien
Klassifikation
Abstract
We investigate the suitability of unsupervised dimensionality
reduction (DR) for transfer learning in the context of different representations
of the source and target domain. Essentially, unsupervised DR
establishes a link of source and target domain by representing the data in
a common latent space. We consider two settings: a linear DR of source
and target data which establishes correspondences of the data and an according
transfer, and its combination with a non-linear DR which allows to
adapt to more complex data characterised by a global non-linear structure.
Statistik
- Das PDF-Dokument wurde 8 mal heruntergeladen.