The chemodiversity between and within individuals of several plant species is remarkable and shaped by the local habitat environment and the genetic background. The forb Erodium cicutarium (Geraniaceae) is globally distributed and partly invasive. This paper hypothesizes a high intra-specific and inter-individual chemical diversity in this species and investigates this by comparing the concentration and diversity of terpenoid compounds in different plant parts, i.e., leaves, blossoms and fruits. Plants were grown from seeds, originating from native range Bavaria (BY), Germany, and invaded range California (CA), USA, populations. In total, 20 different terpenoids were found, which occurred in distinct combinations and the patterns clustered into groups of distinct chemotypes for all plant parts. Several of the chemotypes were specific to plants of one region. The terpenoid compositions of different plant parts within individuals were highly correlated. Chemodiversity was higher in reproductive plant parts compared to the leaves, and higher in plants from BY compared to CA. This study highlights the intra-specific and inter-individual chemodiversity in E. cicutarium, linked to its geographical origin, which may facilitate its invasion success but also calls for further investigation of the role of chemodiversity in invasive plants on interactions with the environment.