TY - JOUR AB - It has been concluded in the preceding papers (Egelhaaf, 1985a, b) that two functional classes of output elements of the visual ganglia might be involved in figure-ground discrimination by relative motion in the fly: The Horizontal Cells which respond best to the motion of large textured patterns and the FD-cells which are most sensitive to small moving objects. In this paper it is studied by computer simulations (1) in what way the input circuitry of the FD-cells might be organized and (2) the role the FD-cells play in figure-ground discrimination. The characteristic functional properties of the FD-cells can be explained by various alternative model networks. In all models the main input to the FD-cells is formed by two retinotopic arrays of small-field elementary movement detectors, responding to either front-to-back or back-to-front motion. According to their preferred direction of motion the FD-cells are excited by one of these movement detector classes and inhibited by the other. The synaptic transmission between the movement detectors and the FD-cells is assumed to be non-linear. It is a common property of all these model circuits that the inhibition of the FD-cells induced by large-field motion is mediated by pool cells which cover altogether the entire horizontal extent of the visual field of both eyes. These pool cells affect the response of the FD-cells either by pre- or postsynaptic shunting inhibition. Depending on the FD-cell under consideration, the pool cells are directionally selective for motion or sensitive to motion in either horizontal direction. The role the FD-cells and the Horizontal Cells are likely to play in figure-ground discrimination can be demonstrated by computer simulations of a composite neuronal model consisting of the model circuits for these cell types. According to their divergent spatial integration properties they perform different tasks in figure-ground discrimination: Whereas the Horizontal Cells mainly mediate information on wide-field motion, the FD-cells are selectively tuned to efficient detection of relatively small targets. Both cell classes together appear to be sufficient to account for figure-ground discrimination as it has been shown by analysis at the behavioural level. DA - 1985 DO - 10.1007/BF00336983 KW - Neural coordination KW - Sensory reception KW - Behavior KW - Physiology KW - Cell biology LA - eng IS - 4 M2 - 267 PY - 1985 SN - 0340-1200 SP - 267-280 T2 - Biological Cybernetics TI - On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. 3: Possible input circuitries and behavioural significance of the FD-cells UR - https://nbn-resolving.org/urn:nbn:de:0070-pub-17740844 Y2 - 2024-11-22T09:01:44 ER -