TY - JOUR AB - The pentamethyldisilanyl-substituted cyclopentadienes Me(n)C(5)H(6-n-m)(Si(2)Me(5))(m) (for n = 0: 1 (m = 1), 2 (m = 2), 3 (m = 3), 4 (m = 4); for n = 1: 5 (m = 1), 7 (m = 2), 9 (m = 3); for n = 3: 13 (m = 1), 14 (m = 2); for n = 4: 15 (m = I)) are accessible in good yields by treatment of the corresponding cyclopentadienyllithium compounds with Me(5)Si(2)Cl. The mono-Me(5)Si(2)-substituted species 1 and 5 are present only to a small extend in form of vinylic isomers and to a greater extend as isomers with the Me(5)Si(2)-group in allylic position; the latter possess a dynamic structure due to sigmatropic rearrangements. In the twice-Me(5)Si(2)-substituted cyclopentadienes 2 and 7, the 5,5 and 2,5 isomers are observed, which can be interconverted by silatropic shifts; in addition, the presence of two vinylic isomers can be proved in the case of 2. In the cyclopentadiene species 3 and 9 with three Me(5)Si(2) groups, only the 2,5,5 isomers can be detected by NMR spectroscopy. Compound 3 possesses a fluxional structure and can thus be deprotonated. On the other hand, 9 does not show a fluxional behaviour and thus cannot be deprotonated. The cyclopentadiene 4 with four Me(5)Si(2) substituents possesses a static structure and cannot be deprotonated. The 2,3,5,5 position of the substituents is proved by an X-ray crystal structure analysis. Only two Me(5)Si(2) groups can be incorporated in the carbon skeleton of 1,2,4-trimethylcyclopentadiene, whereby compounds of the type 1,2,4-Me(3)C(5)H(3-n)(Si(2)Me(5))(n) (13: n = 1; 14: n = 2) are formed. Surprisingly, 14 cannot be deprotonated with (n)BuLi and KH, respectively. The reaction of Me(4)C(5)HLi with Me(5)Si(2)Cl leads to the cyclopentadiene Me(4)C(5)HSi(2)Me(5) (15). Though compound 15 can be deprotonated, further reaction of the resulting anion with Me(5)Si(2)Cl does not lead to the expected cyclopentadiene Me(4)C(5)(Si(2)Me(5))(2) (16). On the other hand, 16 can be prepared by metallation of 14 with C8K and further reaction with CH3I. In contrast to 14, compound 4 cannot be deprotonated with C8K; the reaction of 4 with C8K and CH3I leads to 9 via Si-C bond splitting. The pentamethyldisilanyl-substituted pentamethylcyclopentadiene Me(5)C(5)Si(2)Me(5) (17) is obtained by reaction of Me(5)C(5)K with Me(5)Si(2)Cl; compound 17 shows dynamic behaviour; the migration of the Me(5)Si(2) group is slower than that of the Me(3)Si group in Me(5)C(5)SiMe(3). Three ElMe(3) groups can be introduced stepwise into the 1,2,4-Me(3)C(5)H(3) molecule, as demonstrated by the exemplary synthesis of the cyclopentadienes 1,2,4-Me(3)C(5)H(3-n)(SiMe(3))(n) (10: n = 1; 11: n = 2) and 1,2,4-Me(3)C(5)(SiMe(3))(2)SnMe(3) (12). DA - 1993 DO - 10.1016/0022-328X(93)83341-R LA - ger IS - 1-2 M2 - 57 PY - 1993 SN - 0022-328X SP - 57-67 T2 - Journal of Organometallic Chemistry TI - Pentamethyldisilanyl-substituierte Cyclopentadiene: Synthese, Struktur und dynamisches Verhalten UR - https://nbn-resolving.org/urn:nbn:de:0070-pub-17748137 Y2 - 2024-11-22T04:21:42 ER -