TY - THES AB - In this thesis we will use indecomposable representations of the 3-Kronecker quiver to construct uncountably many infinite Gabriel-Roiter measures. Our aim is to classify all piling submodules of an indecomposable regular module. We will show that they are either unique of a certain length or there is a one-parameter family of such submodules. A possible largest Gabriel-Roiter measure in the central part is discussed. DA - 2008 KW - Köcher (Mathematik) KW - Darstellungstheorie KW - Nichtkommutative Algebra KW - Assoziative Algebra KW - Modul KW - Fibonacci-Folge KW - Quiver KW - Gabriel-Roiter measure KW - Coefficient quiver KW - 3-Regular tree KW - Extended Kronecker quiver KW - Fibonacci numbers LA - eng PY - 2008 TI - Infinite Gabriel-Roiter measures for the 3-Kronecker quiver UR - https://nbn-resolving.org/urn:nbn:de:hbz:361-12949 Y2 - 2024-11-22T07:51:16 ER -