TY - THES AB - In dieser Dissertation wird die effektive numerische Beschreibung nichtlinearer dynamischer Systeme untersucht. Systeme dieser Art tauchen praktisch überall auf, wo zeitabhängige Größen quantitativ untersucht werden, d.h. in fast allen Bereichen der Physik, aber auch in der Biologie, Ökonomie oder Mathematik. Ziel ist die Bestimmung reduzierter Modelle, deren Phasenraum eine signifikant reduzierte Dimensionalität aufweist. Dies wird erreicht durch Benutzung von Konzepten aus der Dichtematrix-Renormierung. In dieser Arbeit werden drei neue Anwendungen vorgeschlagen. Zuerst wird eine Dichtematrix-Renormierungsmethode zur Berechnung einer Schur-Zerlegung vorgestellt. Verglichen mit bereits existierenden Arbeiten liegt der Vorteil dieses Ansatzes in der Möglichkeit, auch für nicht-normale Operatoren orthonormale Basen von sukzessive invarianten Unterräumen zu bestimmen. Der Algorithmus wird dann angewandt auf Gittermodelle stochastischer Systeme, wobei als Beispiele ein Reaktions-Diffusions- und ein Oberflächenablagerungs-Modell dienen. Als Nächstes wird ein Dichtematrix-Renormierungsansatz für die orthogonale Zerlegung (proper orthogonal decomposition) entwickelt. Diese Zerlegung erlaubt die Bestimmung relevanter linearer Unterräume auch für nichtlineare Systeme. Durch die Verwendung der Dichtematrix-Renormierung werden alle Berechnungen nur für kleine Untersysteme durchgeführt. Dabei werden diskretisierte partielle Differentialgleichungen, d.h. die Diffusionsgleichung, die Burgers-Gleichung und eine nichtlineare Diffusionsgleichung als numerische Beispiele betrachtet. Schließlich wird das vorige Konzept auf höherdimensionale Probleme in Form eines Variationsverfahrens erweitert. Dies Verfahren wird dann an den zweidimensionalen Navier-Stokes-Gleichungen erprobt. DA - 2007 KW - Nichtlineares dynamisches System , Dichtematrix , Renormierungsgruppe , Burgers-Gleichung , Navier-Stokes-Gleichung , Dichtematrix-Renormierung , Modellreduktion , Stochastische Dynamik , Reaktions-Diffusions-Modell , Density matrix renormalisation , Model reduction , Proper orthogonal decomposition , Stochastic dynamics , Reaction diffusion model LA - eng PY - 2007 TI - Density matrix renormalisation applied to nonlinear dynamical systems UR - https://nbn-resolving.org/urn:nbn:de:hbz:361-11664 Y2 - 2024-11-21T20:17:18 ER -