TY - THES AB - Die medizinische Bildanalyse beinhaltet eine Vielzahl unterschiedlicher Fragestellungen und Anforderungen. Grundprinzip für viele Anwendungen ist es hier, den Bilddatensatz numerisch zu repräsentieren. Diese numerische Beschreibung in Form sogenannter Merkmalsvektoren kann dann dazu genutzt werden, Bilddatensätze zu analysieren, zu klassifizieren oder anderweitig zu verarbeiten. Die Herausforderung ist es demnach, geeignete numerische Merkmale zu finden, die das zu analysierende Bild und seine medizinischen Charakteristiken optimal repräsentieren. In dieser Arbeit wird eine Methodik vorgestellt, die es erlaubt, solche spezifischen Merkmale zu entwickeln, zu analysieren und an den jeweiligen medizinischen Kontext anzupassen. Die Merkmale werden mittels einer Diskreten Wavelet-Transformation erzeugt und mittels Methoden der Dimensionsreduktion analysiert und optimiert. Die Methodik wird an zwei sehr unterschiedlichen Bildatensätzen aus der klinischen Tumordiagnostik demonstriert. Für beide Datensätze werden numerische Merkmale entwickelt, die dazu geeignet sind, den Datensatz im Rahmen unterschiedlicher Anwendungen zu repräsentieren. DA - 2007 KW - Wavelet-Analyse , Bildverarbeitung , , Medical image analysis , Wavelet analysis , Dimension reduction , DCE-MRI (Dynamic contrast-enhanced magnetic resonance imaging) , Neuropathology LA - eng PY - 2007 TI - Exploration of wavelet-based feature spaces in medical image analysis UR - https://nbn-resolving.org/urn:nbn:de:hbz:361-10953 Y2 - 2024-11-22T03:54:19 ER -