TY - GEN AB - We derive a new equation for the optimal investment boundary of a general irreversible investment problem under exponential Lévy uncertainty. The problem is set as an infinite time-horizon, two-dimensional degenerate singular stochastic control problem. In line with the results recently obtained in a diffusive setting, we show that the optimal boundary is intimately linked to the unique optional solution of an appropriate Bank-El Karoui representation problem. Such a relation and the Wiener-Hopf factorization allow us to derive an integral equation for the optimal investment boundary. In case the underlying Lévy process hits any point in R with positive probability we show that the integral equation for the investment boundary is uniquely satisfied by the unique solution of another equation which is easier to handle. As a remarkable by-product we prove the continuity of the optimal investment boundary. The paper is concluded with explicit results for profit functions of (i) Cobb-Douglas type and (ii) CES type. In the first case the function is separable and in the second case non-separable. DA - 2014 KW - free-boundary KW - irreversible investment KW - singular stochastic control KW - optimal stopping KW - Lévy process KW - Bank and El Karoui's representation theorem KW - base capacity LA - eng PY - 2014 SN - 0931-6558 SP - 20- TI - Irreversible Investment under Lévy Uncertainty: an Equation for the Optimal Boundary UR - https://nbn-resolving.org/urn:nbn:de:0070-pub-29016857 Y2 - 2024-11-22T13:43:57 ER -