TY - GEN AB - Adopting a probabilistic approach we determine the optimal dividend payout policy of a firm whose surplus process follows a controlled arithmetic Brownian motion and whose cash-flows are discounted at a stochastic dynamic rate. Dividends can be paid to shareholders at unrestricted rates so that the problem is cast as one of singular stochastic control. The stochastic interest rate is modelled by a Cox-Ingersoll- Ross (CIR) process and the firm's objective is to maximize the total expected flow of discounted dividends until a possible insolvency time.

We find an optimal dividend payout policy which is such that the surplus process is kept below an endogenously determined stochastic threshold expressed as a decreasing function $r \mapsto b(r)$ of the current interest rate value. We also prove that the value function of the singular control problem solves a variational inequality associated to a second-order, non-degenerate elliptic operator, with a gradient constraint. DA - 2020 KW - Optimal dividend KW - stochastic interest rates KW - CIR model KW - singular control KW - optimal stopping KW - free boundary problems LA - eng PY - 2020 SN - 0931-6558 SP - 35- TI - Optimal Dividend Payout under Stochastic Discounting UR - https://nbn-resolving.org/urn:nbn:de:0070-pub-29436842 Y2 - 2024-11-22T09:08:31 ER -