TY - GEN AB - In this paper, we consider a company that wishes to determine the optimal reinsurance strategy minimising the total expected discounted amount of capital injections needed to prevent the ruin. The company's surplus process is assumed to follow a Brownian motion with drift, and the reinsurance price is modelled by a continuous-time Markov chain with two states. The presence of regime-switching complicates substantially the optimal reinsurance problem, as the surplus-independent strategies turn out to be suboptimal. We develop a recursive approach that allows to represent a solution to the corresponding Hamilton-Jacobi-Bellman equation and the corresponding reinsurance strategy as the unique limits of the sequence of solutions to ordinary differential equations and their first and second order derivatives. Via Ito's formula we prove the constructed function to be the value function. Two examples illustrate the recursive procedure along with a numerical approach yielding the direct solution to the HJB equation. DA - 2021 KW - Reinsurance KW - Regime-switching KW - Brownian motion KW - Markov chain KW - Optimal control KW - HJB equation KW - Ordinary differential equations KW - Boundary value problem LA - eng PY - 2021 SN - 0931-6558 SP - 36- TI - Optimal Surplus-dependent Reinsurance under Regime-Switching in a Brownian Risk Model UR - https://nbn-resolving.org/urn:nbn:de:0070-pub-29536033 Y2 - 2024-11-22T08:55:49 ER -