TY - JOUR AB - Structured illumination microscopy (SIM) is a fast and gentle super-resolution fluorescence imaging technique, featuring live-cell compatible excitation light levels and high imaging speeds. To achieve SIM, spatial modulation of the fluorescence excitation light is employed. This is typically achieved by interfering coherent laser beams in the sample plane, which are often created by spatial light modulators (SLMs). Digital micromirror devices (DMDs) are a form of SLMs with certain advantages, such as high speed, low cost and wide availability, which present certain hurdles in their implementation, mainly the blazed grating effect caused by the jagged surface structure of the tilted mirrors. Recent works have studied this effect through modelling, simulations and experiments, and laid out possible implementations of multi-color SIM imaging based on DMDs. Here, we present an implementation of a dual-color DMD based SIM microscope using temperature-controlled wavelength matching. By carefully controlling the output wavelength of a diode laser by temperature, we can tune two laser wavelengths in such a way that no opto-mechanical realignment of the SIM setup is necessary when switching between both wavelengths. This reduces system complexity and increases imaging speed. With measurements on nano-bead reference samples, as well as the actin skeleton and membrane of fixed U2OS cells, we demonstrate the capabilities of the setup. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement DA - 2021 DO - 10.1364/OE.437822 LA - eng IS - 24 M2 - 39696 PY - 2021 SP - 39696-39708 T2 - Optics Express TI - Dual color DMD-SIM by temperature-controlled laser wavelength matching UR - https://nbn-resolving.org/urn:nbn:de:0070-pub-29597511 Y2 - 2024-11-22T03:56:23 ER -