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Abstract Behavioural and electrophysiological experiments
suggest that blowflies employ an active saccadic strategy of
flight and gaze control to separate the rotational from the
translational optic flow components. As a consequence, this
allows motion sensitive neurons to encode during transla-
tory intersaccadic phases of locomotion information about
the spatial layout of the environment. So far, it has not been
clear whether and how a motor controller could decode the
responses of these neurons to prevent a blowfly from col-
liding with obstacles. Here we propose a simple model of
the blowfly visual course control system, named cyberfly,
and investigate its performance and limitations. The sensory
input module of the cyberfly emulates a pair of output neurons
subserving the two eyes of the blowfly visual motion path-
way. We analyse two sensory–motor interfaces (SMI). An
SMI coupling the differential signal of the sensory neurons
proportionally to the yaw rotation fails to avoid obstacles. A
more plausible SMI is based on a saccadic controller. Even
with sideward drift after saccades as is characteristic of real
blowflies, the cyberfly is able to successfully avoid collisions
with obstacles. The relative distance information contained
in the optic flow during translatory movements between sac-
cades is provided to the SMI by the responses of the visual
output neurons. An obvious limitation of this simple mech-
anism is its strong dependence on the textural properties of
the environment.
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1 Introduction

Anyone who has observed a blowfly landing on the rim of a
cup or two blowflies chasing each other will be familiar with
the breath-taking aerobatics these tiny animals can produce.
Within a fraction of a second the blowfly performs several
high-speed saccadic turns in preparation for a safe landing,
and a pursuer blowfly is quite capable of catching its speed-
ing target. The human eye is scarcely able to follow the flight
paths of flies performing such behaviours. In contrast to this,
blowflies skilfully avoid obstacles emerging in their flight
path during these high speed flight manoeuvres. Obstacle
detection relies largely on the continually changing flow of
the retinal images of the environment. This optic flow is deliv-
ered to the brain, evaluated within 20–30 ms (Warzecha and
Egelhaaf 2000) and transformed into signals the blowfly uses
for motor control (Egelhaaf 2006). The correctional move-
ments, in turn, result in changes of the retinal image flow,
closing the action–perception loop.

The blowfly has proved to be an outstanding model sys-
tem for unravelling the computations in the brain which serve
to extract the behaviourally relevant information from the
retinal optic flow patterns (Borst and Haag 2002; Egelhaaf
2006; Hausen 1993; Krapp 2000). On the one hand, large
parts of the blowfly visual system are involved in optic flow
processing and, on the other hand, experimental analysis can
be performed on blowflies by a broad spectrum of methods.
Only recently it became possible, thanks to novel technolo-
gies, to investigate optic flow processing using visual stim-
uli which come very close to what flies have seen during
their acrobatic flight manoeuvres (Boeddeker et al. 2005;
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Karmeier et al. 2006; Kern et al. 2005; Lindemann et al.
2003; van Hateren et al. 2005).

Based on experimental results, motion computation in the
blowfly visual motion pathway has been modelled to various
degrees of sophistication (Borst et al. 2003; Borst 2004; Kern
et al. 2000, 2001), culminating in the finding that these mod-
els can even account for the performance of an output neuron
of the blowfly motion vision system under naturalistic stim-
ulus conditions (Lindemann et al. 2005). So far, however, all
these models focus on the mechanisms underlying sensory
information processing and have only rarely been embedded
as the sensory input stage in a more comprehensive model of
blowfly visuo-motor control (Warzecha and Egelhaaf 1996).

Although blowflies were observed to be able to fly slow
continuous turns while chasing targets (Boeddeker et al. 2003;
Boeddeker and Egelhaaf 2003), they do not show this behav-
iour in normal cruising flight or in obstacle avoidance tasks.
Instead, they keep their gaze almost perfectly stable for short
flight segments and then execute sharp fast turns, commonly
referred to as body saccades. These saccades only last for
about 50–100 ms. Since during saccades blowflies may reach
rotational velocities of up to 5,000◦/s, they can change their
body orientation by up to 90◦ in this short time (Schilstra and
van Hateren 1999; van Hateren and Schilstra 1999). During
saccadic turns, the head and body movements are coordi-
nated in a way that minimises the time period of unstable
gaze. Head movements serve to temporally shorten the turn
with respect to the gaze. This behaviour can be interpreted as
an active vision strategy stabilising the gaze rotationally as
much as possible (Kern et al. 2006; Schilstra and van Hateren
1998). By this gaze stabilisation, the rotational and transla-
tional components of the optic flow are largely segregated
at the behavioural level. However, in blowflies the saccadic
strategy of flight and gaze control is not obviously reflected
as sharp bends in the path of the body’s centre of mass.
Changes in orientation do not immediately result in changes
in flight direction due to sideward drift after a body saccade,
presumably caused by the inertia of the blowfly (Schilstra
and van Hateren 1999).

The separation of rotational and translational optic flow
components is assumed to facilitate the extraction of spatial
information from the optic flow, because only the transla-
tional flow component provides information about
the distance to environmental objects (Koenderink and van
Doorn 1987). Pooling of optic flow information over a large
part of the visual field into the activity of a single neuron dras-
tically reduces the amount of information to be processed
by subsequent stages of the system. Nonetheless, the rele-
vant information may still be encoded in the integrated sig-
nal, if the spatial pooling is done appropriately (Dahmen
et al. 1997). Indeed, motion sensitive output neurons of the
blowfly’s visual motion pathway, such as the HS-cells, are
supposed to extract behaviourally relevant information about

translational optic flow. In the intersaccadic intervals of rel-
atively stable gaze they encode information about the three-
dimensional structure of the environment (Kern et al. 2005;
van Hateren et al. 2005). Nonetheless, it is not clear so far
what triggers saccades in blowflies. For the fruit fly
Drosophila, it was concluded that a visual trigger feature
for saccades is fronto-lateral image expansion (Bender and
Dickinson 2006; Tammero and Dickinson 2002a,b).

Given the ability of flies to perform extraordinarily acro-
batic flight manoeuvres, it may not be surprising that there
have been various attempts to implement fly-inspired optic
flow models in simulation and on robotic platforms (Franz
et al. 2004; review: Franz and Mallot 2000; Neumann 2004;
Webb et al. 2004; Zufferey and Floreano 2006). On the one
hand, these approaches usually employed simplified versions
of the sensory models. On the other hand, they did not attempt
to model the characteristics of fly visually guided behaviour.
However, in all these studies the sensory–motor loop was
closed. Most of these systems use optic flow information to
stabilise the path of locomotion against disturbances. There
are only few attempts in robotics to make use of the saccadic
strategy of locomotion and of the implicit distance informa-
tion present in translatory optic flow to implement obstacle
avoidance (Chahl and Srinivasan 2000; Franceschini et al.
1992; Reiser and Dickinson 2003; Sobey 1994; Zufferey and
Floreano 2006). However, most of these systems generate
movements of very slow dynamics compared to the blowfly.

The system described in the following uses a saccadic con-
troller that receives its sensory input from a model of the fly’s
visual motion pathway and takes the specific dynamic fea-
tures of blowfly behaviour into account. The sensory model
providing the input to the controller has been specified and
parameterised on the basis of experimental data (Lindemann
et al. 2005). The calibration was based on responses of the
HSE-cells, major motion sensitive output neurons of the
blowfly’s visual system (Hausen 1982a,b), to naturalistic
optic flow, i.e., the visual input of flies in free-flight situations
(Kern et al. 2005). To simulate the behaviour of a blowfly, the
output signals of the sensory model must be transformed into
motor signals to generate behavioural responses. The prop-
erties of the motor controller determine how these motor
signals are transformed into movements of the animal. By
simulating the system in a closed control loop, hypotheses
about the functional significance of the responses of sensory
neurons and different types of SMIs will be tested in the con-
text of obstacle avoidance. Here we study the ability of the
controller to avoid collisions with obstacles, one of the most
fundamental tasks of any autonomous agent. The optomotor
response was proposed in a previous study to be able to pre-
vent flies from colliding with the walls of an experimental
arena (Götz 1975). To test this hypothesis, the performance
of a smooth optomotor controller will be compared with that
of a saccadic controller. The main purpose of this study is
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Fig. 1 Principle of the closed-loop simulation. The retinal images
generated in a computer graphics module are fed to the model of the
sensory system. The responses of the sensory system are converted by
the sensory–motor coupling module to motor actions. The path genera-
tion module generates an update of the cyberfly’s position and orienta-
tion from these. The loop is closed by generating the next retinal image
frame for this updated position

to test hypothetical mechanisms for visually guided obsta-
cle avoidance behaviour of blowflies. However, the devel-
oped flight controllers may also serve as part of biologically
inspired autonomous artificial systems. Simple and efficient
mechanisms for autonomous course control and, in particu-
lar, the avoidance of obstacles are of crucial significance in
the technical domain.

2 The model

2.1 Closed-loop simulation environment

Closed-loop simulations can be used to test hypotheses
regarding the coupling of the sensory system responses to
the behavioural output. In our implementation, a computer
graphics system generates a retinal image, based on the posi-
tion and orientation of the cyberfly in a predefined virtual
3D-environment (Fig. 1). The retinal images are processed
by a model of the sensory system that is then coupled to
a SMI module implementing the formalised hypothesis for
behavioural control. A simple path generation module cal-
culates the movements of the virtual animal resulting from
the signals generated by the SMI and updates the system’s
position and orientation in the virtual environment. The path
generation phenomenologically takes into account the body
dynamics of the fly. To close the loop, the new position is
passed to the computer graphics system for the generation of
a new retinal image.

2.1.1 Sensory model

The sensory model used for the closed-loop simulations cor-
responds to the model of one output neuron, the HSE-cell,

in each half of the blowfly visual motion pathway. The HSE
neuron responds to horizontal wide-field motion in the equa-
torial part of the visual field with graded membrane potential
changes superimposed by small active potentials (Hausen
1982a,b). This model has previously been shown to account
for all major features of the graded responses of the real cell to
behaviourally generated optic flow (Lindemann et al. 2005).
The sensory model is sketched here only briefly to make this
paper self-contained (Fig. 2).

The input images of the visual motion pathway are sam-
pled by Gaussian shaped spatial low-pass filters (σ = 2◦).
The output of these filters forms the input to the photorecep-
tors that are equally spaced at 2◦ along the elevation and
azimuth of the eye. The array of photoreceptors forms a
rectangular grid in the cylindrical projection with 51 rows
and 86 columns. The temporal properties of the peripheral
visual system are modelled as a temporal filter with a ker-
nel that was derived from an electrophysiological analysis
of the responses of 2nd-order visual interneurons (LMCs)
with white-noise brightness fluctuations (James 1990;
Juusola et al. 1995). The filter kernel is a kind of tempo-
ral band-pass filter and is shown in Fig. 2a (for a formal
description see Lindemann et al. 2005).

The filter outputs of neighbouring elements are fed into
elaborated movement detectors of the correlation type with
a 1st-order temporal low-pass filter (time constant 10 ms) in
one of its branches and a 1st-order temporal high-pass filter
(time constant 60 ms) in its other branch (Fig. 2a). Each local
movement detector consists of two mirror-symmetrical sub-
units. In each subunit, the low-pass filtered signal of one input
channel is multiplied with the high-pass filtered signal of the
neighbouring input channel. Before the outputs of the move-
ment detector subunits are spatially pooled by the model
HSE-cell, their signals are differently weighted, according
to the spatial sensitivity distribution of the HSE-cell (Krapp
et al. 2001). Maximal sensitivity of the simulated neuron is
at 15◦ lateral to the body long axis (see Lindemann et al.
2005 for details). The spatial pooling site of the model repre-
sents the dendritic tree of the HSE-neuron. The summation of
the two types of motion detector subunits are interpreted as
the conductances of excitatory and inhibitory synapses on the
integrating cell (Borst et al. 1995). The resulting membrane
potential of the model HSE-cell is calculated on the basis of
the equivalent electrical circuit of a one-compartment passive
membrane patch (Fig. 2a; for details see Lindemann et al.
2005). Since conductances cannot assume negative values,
the outputs of the movement detector subunits were rectified
before feeding them into the model of the integrating cell
(Fig. 2a):

Vm = Eege + Ei gi + E0g0

ge + gi + g0
(1)
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Fig. 2 a Structure of the sensory model. The signals of the input
elements (Gaussian spatial lowpass filters not shown) are processed by a
temporal convolution filter approximating the response of the 2nd-order
interneurons in the fly visual system. These signals are fed to elaborated
correlation-type motion detectors. The motion is computed from a pair
of input elements by correlating (multiplying) the high-pass filtered
signal of one to the low-pass filtered signal of a neighbouring chan-
nel. Two mirror-symmetrical subunits of this structure exist for each
pair of input elements. The signals of these motion detector subunits

are spatially pooled by a weighted sum and drive the synaptic conduc-
tances of an excitatory and an inhibitory synapse in a one-compartment
membrane model. b The response of this model to behaviourally gen-
erated optic flow closely fits the response of the real neuron to the same
stimulus. The upper panel shows the yaw rotations present in the stim-
ulus; the central panel shows the responses of the model (grey line)
and the neuron (black line). The lower panels show example segments
zoomed for closer inspection. Figure adapted from Lindemann et al.
(2005)

For further simplification of Eq. 1, the resting potential of the
model HSE-cell was set to E0 = 0 mV. This setting does not
change the relative fluctuations of the membrane potential.
The excitatory (ge) and inhibitory (gi ) synaptic conductances
are given by the summed outputs of the two types of motion
detector subunits after weighting them according to the spa-
tial sensitivity distribution of the HSE-cell (see above). The
leak conductance g0 and the ratio of the inhibitory and exci-
tatory synaptic reversal potentials Ei

/
Ee are free parame-

ters of the model. These two parameters were determined by
optimisation of the quality of the fit of cellular responses and
chosen as g0 = 500 and Ei

/
Ee = −0.95, respectively.

With these parameter settings, the model of the HSE-cell
was shown to fit the complex time course of the responses
of its natural counterpart to behaviourally generated optic
flow with a deviation comparable to the neuronal intertrial
variability (Fig. 2b). In particular, the ability of the neuron to
represent information about the optic flow generated by side-
ward movements was found in the model responses, too. This
means that the model codes relative information about the
three-dimensional layout of the environment between sac-
cades like the neuron does (Lindemann et al. 2005).

2.1.2 Sensory–motor interfaces (SMIs)

Two different modules for the coupling of the sensory neu-
rons to the motor output were tested in closed loop simula-
tion with respect to obstacle avoidance: A simple continuous
coupling of the large-field motion sensitive neurons to the
rotation implementing the so-called optomotor response, and
a controller generating saccadic turns as observed in free fly-
ing blowflies. A detailed description of the two SMIs is given
below alongside with the results obtained with the particular
module.

Although, in principle, it is possible to estimate the
flight forces resulting from the induced wing beat pattern
(Schenato et al. 2001), we chose to simulate the movements
of the fly only phenomenologically. The detailed modelling
of the physical properties of the flying blowfly is beyond
the scope of this article. For rotations, the SMI generates
the yaw velocity as an output signal. For the optomotor con-
troller, the yaw torque is linearly coupled to the yaw velocity.
Such a coupling is justified by the very long time constant
in the controller, leading to very slow changes in the torque
that can be followed by the system even if it is dominated by
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inertia. The same coupling was used in experiments coupling
the torque of a tethered fly to the stimulus motion showing
that the blowfly can deal with such conditions (Warzecha
and Egelhaaf 1996). For the saccadic controller, the time
course of the saccade velocity profile of free-flying blowflies
(Schilstra and van Hateren 1999) was used as a template to
generate realistic turning dynamics. The saccadic controller
did not generate any rotations between saccades.

Blowflies show considerable sideward drift after saccades
(Schilstra and van Hateren 1999). The observed drift has its
likely origin in inertial forces, but may also be controlled
actively for steering (Kern and Boeddeker, personal commu-
nication). Partial drift compensation presumably results from
the fact that blowflies do not fly their saccades by turning
around the yaw body axis, but by a combination of yaw, roll,
and pitch, leading to a banking behaviour like airplanes show
in a sharp turn (Schilstra and van Hateren 1999; van Hateren
and Schilstra 1999). We account for the overall drift, irrespec-
tive of its origin, by a phenomenological model. Moreover,
the fast turns slightly slow down the cyberfly in the head-
ing direction similar as observed in real flies (Kern et al., in
preparation), which also needs to be compensated by a thrust
control mechanism. To keep our model as simple as possible,
we do not propose a thrust control mechanism here. Rather,
we lump the different determinants of velocity control into
a simple proportional controller. As a further simplification,
this controller is assumed to have perfect knowledge of the
fly’s velocity.

The controller generates a 2D acceleration vector in each
time step:

a f (t) = 1

τ f

(
vd

f − v f (t − �t)
)

(2)

as(t) = 1

τs

(
vd

s − vs(t − �t)
)

where a f (t) and as(t) are the forward and sideward com-

ponents of the acceleration
⇀
a(t),

⇀
v(t) the velocity with its

sideward and forward components vs and v f , respectively;

and ⇀
v

d
the desired velocity (1 m/s forward velocity). Side-

ward drift of different duration and, accordingly, the time it
takes for the forward velocity to reach its pre-saccade value
are modelled by varying the time constants τ f , τs .

For a given time t , the velocity is updated by stepwise
integration, according to

⇀
v(t) = ⇀

v(t − �t) + ⇀
a(t) · �t (3)

where �t = 1 ms the duration of a simulation step.
To model the extreme case of perfect velocity control, the

velocity was alternatively set to the desired value in each time
step

⇀
v(t) = ⇀

v
d

(4)

The position �p(t) of the cyberfly is updated according to

⇀
p(t) = ⇀

p(t − �t) + ⇀
v(t) · �t (5)

3 Results

3.1 Simulation experiment with different types of SMIs

The performance of a cyberfly was tested with two funda-
mentally different types of controllers. The first controller
(optomotor controller) couples the signals of a major output
cell of the blowfly’s visual motion pathway, the HSE-cell,
in a continuous way to the turning response of the cyberfly.
This type of controller implements the classical hypothesis
drawn from behavioural optomotor experiments on tethered
flying or walking flies with the animal turning on the spot
in response to a purely rotating environment [see, e.g., Götz
1975 (Drosophila); Warzecha and Egelhaaf 1996 (Lucilia)].
The second controller (saccadic controller) implements the
saccadic flight mode observed in freely flying flies in labo-
ratory (Schilstra and van Hateren 1999; Kern et al., in prepa-
ration) and outdoor environments (Boeddeker et al. 2005).
This type of controller generates short purely translational
flight segments interleaved with sharp fast turns mimicking
the body saccades observed in flies. Both controllers and
their performance are described in detail together with the
performance of the corresponding cyberfly in the following
sections.

3.2 Optomotor controller

One of the basic behavioural responses observed in many
insects is the optomotor turning response. This behaviour
is thought to stabilise a straight path of movement by com-
pensating rotations caused either by external disturbances
or by internal asymmetries in the motor system. For the
horizontal plane, this behaviour can be achieved by bal-
ancing out the image velocity the animal observes on both
sides (Götz 1975). However, this type of controller has also
been proposed to be able, as a useful by-product of the bell-
shaped ambiguous velocity tuning of the motion detection
system (Fig. 3b), to accomplish collision avoidance (Götz
1975). An imbalance of the image velocities can be caused
either by self-rotation or by asymmetries in the distance of
the environment. Depending on the source of the imbal-
ance, a rotational response to restore optic flow symme-
try has to be directed inversely. To compensate for self-
rotation, it has to be directed towards the side facing the larger
image velocity. When the larger velocity is caused by closer
objects, the animal has to generate an avoidance response
instead. This reversal in response direction can result from
an implicit sign reversal of the differential response caused by
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Fig. 3 a The structure of the sensory–motor module implementing
the optomotor response. The differential signal of the two HSE input
elements of the cyberfly are coupled via a low-pass filter (time con-
stant 750 ms) to the rotational velocity the fly generates. The rotational
velocity is limited to 3,000◦/s. b The motion detectors used in the sen-
sory model encode the velocity with in bell-shaped dependency. An
increase in velocity can thus lead to an increase in response (dashed

arrows), if the velocities are suboptimal, or to a decrease in response
(solid arrows), if the velocities are super optimal. (c) Example trajec-
tories of the closed-loop simulation of this controller: The controller
induces a weak tendency to avoid close walls (1) and can counteract a
rotational offset (2 with, 3 without optomotor response). A top view of
the 3D-setup used for all simulation experiments is shown in perspective
projection

the high-velocity translational optic flow when the fly comes
close to the arena wall. If the velocities are low, the HSE-
cell confronted with the faster movement will respond with
a larger signal than the cell facing the slower image move-
ment. The situation is inverted if both velocities are beyond
the velocity optimum of the movement detectors. In this case,
the response of the cell encoding the faster movement will
be lower than the response of the cell stimulated with slower
motion (Götz 1975). If optomotor behaviour is coupled to the
difference of two HSE-cell signals, the sign of the response
thus can change depending on the velocity level. A response
towards faster motion can turn into an avoidance response
simply by increasing the stimulus velocity of an asymmetric
translational flow field. A simple optomotor controller cou-
ples the difference of two simulated HSE-cells to the yaw
torque generated by the system. The simplest way to couple
this signal to the yaw torque is a linear coupling defined by
a motor gain factor (Fig. 3a).

3.2.1 Performance of the optomotor controller

The optomotor controller was tested in two types of sim-
ulations. The first and classical experiment is to observe

the optomotor following responses in a system reduced to
one rotational degree of freedom. In a second experiment,
the behaviour of the system with constant forward velocity
was analysed. The simulations were performed in a virtual
cylinder with a diameter of 930 mm and a height of 900 mm
approximated by 36 rectangular wall segments covered with
a random dot texture formed by black and white squares with
an edge length of 10◦ visual angle. The axis of the cylinder is
parallel to the yaw axis of the cyberfly; the vertical position
of the fly is at half height of the cylinder. If not stated other-
wise, the same cylinder is used for all simulations described
below.

The optomotor controller was calibrated in the first test
situation of the classical optomotor situation with the cyber-
fly in the centre of a rotating drum. In such a situation, the
system is able to control its rotational speed while being
fixed in position. The coupling gain was varied systemati-
cally. As expected, this SMI showed that the system is not
able to compensate for the rotation of the stimulus if the gain
is too small. At a critical value of the gain, the system is
able to compensate the rotation almost perfectly, leading to
a remaining slip velocity close to zero. A gain in this range
was used for the subsequent simulations. If the gain is much
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larger than this critical value, the system overcompensates
resulting in velocity oscillations around a zero mean.

For the second simulation experiment that was to test
whether an optomotor controller can prevent the cyberfly
from colliding with the arena wall, the cyberfly was moved
with a constant velocity of 1 m/s, which is in the range of
translation velocities of blowflies in arenas of comparable
size (Kern, in preparation). The gain was chosen as deter-
mined as optimal in the classical optomotor situation (first
experiment). A cyberfly with an optomotor controller inher-
ently shows, as proposed by Götz (1975), a tendency to avoid
an approaching wall in a cylindrical test environment (Fig. 3c,
trajectory 1). However, this turning tendency was by far too
weak to prevent the cyberfly from colliding with the wall.
This finding is qualitatively invariant for a large range of gain
factors. By systematic variation we did not find a gain factor
leading to a sufficient wall avoidance of a stable system.

The optomotor response is supposed to serve the stabili-
sation of a straight translatory movement and to correct for
external rotatory disturbances and asymmetries in the flight
motor or walking apparatus. Consistent with other techni-
cal implementations (Harrison and Koch 1999; Webb et al.
2004), the system is able to correct for a motor bias in a
combination of translatory and rotatory self-motion. In the
example shown in Fig. 3c the cyberfly was translated with a
constant forward velocity of 1 m/s. A superimposed rotatory
offset of 100◦/s simulated the motor bias. The system com-
pensates for the rotatory offset to a large extent, which leads
to a larger radius in the resulting trajectory (Fig. 3c, trajec-
tory 2) than would result from the uncorrected bias (Fig. 3c,
trajectory 3). However, the system did not show any pro-
nounced collision avoiding tendency.

If the sign of coupling is inverted, the optomotor response
drives the system on a circular trajectory, because the turn-
ing response to a small asymmetry in the input increases the
asymmetry in this situation. Although the non-linear velocity
dependence of the motion detection system prevents an infi-
nite angular acceleration, the system is trapped in its circular
movement.

3.3 Saccadic controller

Although flies show optomotor responses that may serve
course stabilisation against external disturbances or internal
asymmetries of the flight apparatus, it is obvious that other
visually guided control systems are required to account for
collision avoidance. The cyberfly shows, at least under some
environmental conditions, wall avoidance behaviour when
introducing a saccadic motion pattern reminiscent of freely
flying blowflies. This strategy effectively separates the trans-
lational from the rotational components of the optic flow. In
this part of the analysis, the properties of the saccadic system
were evaluated.

3.3.1 Organisation of the saccadic controller

The saccadic controller basically forms a state machine with
3 distinct states (Fig. 4a). The generation of a saccadic turn
forms one state (called S1 in the following). The duration of
S1 (23 – 70 ms) depends on the amplitude of the generated
saccade. After generating the turn, the controller switches
to state S2 of saccadic suppression during which no turn is
generated. After a fixed duration (20 ms) of S2, the controller
switches to state I in which no rotational movement is gener-
ated and the cyberfly generates only translatory movements.
During the purely translatory flight in state I, thresholding
is applied to the HSE signals on each side of the cyberfly
(Fig. 4c). When one of the HSE signals exceeds the thresh-
old, the controller switches to state S1 again, initiating the
next saccadic turn. The threshold value declines exponen-
tially over time during state I (time constant of decline 40 ms).
Starting from a depolarisation value above the dynamic range
of the HSE signals it asymptotically reaches a value below
the typical depolarisation of HSE observed during straight
flight in the test arena. This exponential decay modulates
the probability of generating the next saccade: The longer
the intersaccadic interval lasts, the more likely the genera-
tion of the next saccade becomes. For a given distance of the
cyberfly to objects or walls, this also leads to a regular gener-
ation of saccades within similar intervals, as observed in free
blowfly flight (Kern et al., in preparation), without explic-
itly modelling an internal clock for saccade generation. With
the transition from state S2 to state I, the threshold value is
reset.

In state S1, the controller generates the yaw velocity of the
saccade according to the experimentally determined template
(Fig. 4b, see Schilstra and van Hateren 1999). The saccade is
directed towards the side of the HSE-cell that is more depo-
larised, i.e., the one where the threshold is exceeded first.
Caused by the pattern dependencies and the non-linear veloc-
ity tuning of the correlation motion detectors this can mean
that the other HSE neuron experiences the larger optic flow
(see Fig. 3b, solid arrows). Our results indicate that this is
indeed the case in the tested environment, since the cyber-
fly is successful in avoiding the wall and thus turns away
from the side experiencing the larger optic flow. For the gen-
eration of saccades, a fixed motor program is assumed to
generate a stereotypical velocity time course of the cyberfly
in every saccade. The fly modulates both the duration and
the amplitude of the velocity time course to achieve differ-
ent turning angles (Fig. 4a). The saccade amplitude is deter-
mined by the normalised difference response of the right
(R) and left (L) HSE-cell at the time when the saccade is
evoked:

dL R = C
|L − R|
|L| + |R| (6)

123



220 Biol Cybern (2008) 98:213–227

Fig. 4 a The saccadic
controller is based on a simple
state machine. Rounded boxes
represent states and the arrows
indicate the conditioned state
changes. b The time course of
saccadic turns generated in State
S1. Yaw rotational velocity of
saccades from recorded free
flight trajectories (Schilstra and
van Hateren 1999) were
averaged over classes of saccade
amplitudes. Classes are given in
the plot legend defined by the
peak velocity in a saccade.
c Structure of the saccadic
controller. An adaptive threshold
(decay time constant 40 ms) is
applied to the HSE signals. HSE
signals above threshold trigger a
saccade. The amplitude is
determined from the contrast of
the HSE signals at trigger time,
the direction determined by
which side triggered the
saccade. The pattern generator
selects the appropriate template
from (b) based on the calculated
amplitude
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with C = 10 being a scaling factor determined by systematic
variation to map the relevant range of HSE contrast values to
the number of saccade templates.

The amplitude as of the saccade is interpreted as the index
to the N = 8 velocity templates (Fig. 4b) derived from
blowfly free flight data (Schilstra and van Hateren 1999):

as =
{

N − 1 if dL R � N
�dL R� otherwise

. (7)

Although insects including blowflies modulate their
flight velocity depending on the environmental structure
(Srinivasan and Zhang 2000; Kern et al., in preparation), we
simplified the controller in this respect. The desired value
for proportional control of the velocity is a constant forward
velocity of 1 m/s.

The properties of the saccadic controller were evaluated
for different time constants of sideward drift and forward
velocity control; i.e., several values for τ f , τs were tested
(Eq. 2; Fig. 5). The starting conditions and the turn templates
(e.g., Fig. 5a) were identical. In the special case without drift
(Eq. 4) the trajectory is always tangential to the cyberfly
orientation (Fig. 5b). For large time constants (i.e., τs =
τ f = 50 ms), pronounced drift movements are generated
resulting in an initial turn with very large radius (Fig. 5d).

Intermediate drift compensation (e.g., τs = τ f = 10 ms)
leads to sideward drift as is typically observed in blowfly
flight (Fig. 5e). To test the effects of the time constant of
sideward drift decay and deceleration following a turn we
also parameterised the two controllers with different time
constants. Figure 5c, f shows examples for the resulting turn
dynamics. Note, that the cyberfly accelerates during the turn
if the forward deceleration is compensated more quickly than
the sideward drift decays (i.e., τs > τ f , Fig. 5f). This is
in contradiction to observations in free blowfly flight (Kern
et al., in preparation), making these parameter constellations
biologically implausible.

Figure 6 further illustrates the resulting sideward drift
movements present in the trajectories resulting from the
velocity controller.

3.3.2 Saccadic controller without sideward drift

In a first version, the saccadic controller compensates com-
pletely for any sideward drift (Eq. 4). In the resulting trajec-
tory the cyberfly is always oriented tangentially to its flight
path (Fig. 6a). Without sideward drift, the saccadic flight
mode leads to a much better avoidance of the cylinder walls
in the test environment than the optomotor controller. Hence,
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Fig. 5 Turn trajectories
generated by different thrust
control time constants for a
given turn template starting
from identical conditions. a The
rotational velocity generated by
the saccadic controller. b For
complete compensation of drift
and deceleration after the turn.
The cyberfly orientation is
always parallel to the direction
of flight. c–f If the velocity
effects of the turn are
compensated by the proportional
controller, the cyberfly drifts
into the previous direction of
flight after the turn. Different
combinations of values result in
different turn dynamics
(c: τ f = 50 ms, τs = 10 ms,
d : τ f = 50 ms, τs = 50 ms,
e : τ f = 10 ms, τs = 10 ms,
f : τ f = 10 ms, τs = 50 ms)
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a saccadic flight strategy, as observed in flies, appears to facil-
itate wall avoidance. Nonetheless, wall avoidance is not fully
reliable and depends on the starting position of the cyberfly.
This is illustrated by the length of flight trajectories starting
at different locations in the flight arena (Fig. 7). The cyber-
fly always started in the direction indicated by the arrow in
Fig. 6. The maximal flight duration was limited to a 9.75 s test
period (initial 5 s shown in Fig. 6). The maximal path length
that can be reached at a translation velocity of 1 m/s within
this time without collision with the arena wall amounts to
9.75 m. For some starting positions, the cyberfly crashes into
the arena wall after a shorter period of time.

3.3.3 Systematic variation of sideward drift

Although a saccadic controller with no sideward drift is quite
successful in avoiding collisions with the arena wall,
blowflies show a pronounced sideward drift after saccades

(Schilstra and van Hateren 1999). To assess the consequences
of different amounts of sideward drift, we varied the time
constants for forward and sideward velocity control in the
range of 10 ms � τ � 50 ms. For larger values than 50 ms,
the velocity effects of one saccade last beyond the follow-
ing intersaccadic interval, leading to instabilities in the sys-
tem. System performance was determined by the distance
travelled on average for 81 different starting positions in
the cylinder for each parameter constellation (see Fig. 7 for
exemplary flight length histograms). Figure 8 shows how the
average flight length before colliding with the arena wall
depends on the two time constants, which were varied in
steps of 10 ms in the range between 10 and 50 ms. Shorter
time constants would be implausible for a neuronal control
mechanism, and for larger values the system would not regain
the set velocity within the intersaccadic interval. Figure 6b,
c shows examples of the trajectories for the extreme parame-
ter settings. The maximal flight distance of 7.8 m is reached
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v=const. τf=10ms, τs=10ms τf=50ms, τs=50ms

edutittalaitini

a b c

Fig. 6 Example trajectories generated by the saccadic controller in
closed loop simulation in a cylindrical flight arena. a Cyberfly elimi-
nating all sideward drift (Eq. 4). Cyberfly position and body orientation
are shown every 50 ms. The + indicates the start and the * the end of a

flight. b, c Two parameter constellations for the proportional velocity
controller shown exemplarily (b: τ f = 10 ms, τs = 10 ms, c : τ f =
50 ms, τs = 50 ms). Note that the trajectories for larger time constants
appear smoother, although the rotational dynamics are unchanged
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Fig. 7 Histogram showing the distribution of flight lengths for five
parameter constellations (see legend). Bars show percentages of flights
from 81 different starting positions. Flight lengths for each condition
were binned into 10 bins. Most flights are ended by a simulation timeout
for low sideward time constants (τ f < 20 ms or v = const). For large
values (τs = 50 ms), flight lengths are almost equally distributed

for a parameter constellation at the boundary of this range
(τs = 10 ms,τ f = 50 ms), the flight distance of a cyber-
fly without any sideward drift is 7.2 m on average. In com-
parison, this suggests that the flight performance slightly
increases for small time constants of sideward drift decay.
However, larger time constants of sideward drift decay have
a clear negative effect on the performance. The time constant
of the forward velocity controller has only a weak effect on
the performance for a given value for the sideward controller.

The near columnar structure of the contour plot (Fig. 8)
shows that the effect of the time constant of the sideward
drift decay is strong. The effect of a larger time constant
for forward velocity control following a turn is much less
prominent.
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Fig. 8 Dependency of cumulated flight distance on the controller para-
meters. The arrow indicates the performance of the controller generat-
ing constant forward velocity

3.3.4 Simple additional rule for straight wall approaches

We observed that the cyberfly with saccadic controller as
discussed above often fails when the wall is approached head-
on. This is plausible since such an approach leads to a vir-
tually symmetrical optic flow across the two eyes, inducing
only a negligible difference in the HSE responses. Accord-
ingly the generated saccade amplitude (Eqs. 6, 7) is small
even for large velocities in the resulting expansion flow field.
As a result the cyberfly generates small saccades at a high
frequency when approaching the wall perpendicularly on a
straight line, leading to an insufficient avoidance response.
For a starting position close to the wall and a radial initial
direction the cyberfly fails to generate a sufficiently large
saccade (Fig. 9a).
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a b

Fig. 9 Two trajectories with the same starting condition illustrating
the effect of a simple change in saccade generation rules: a Small HSE
contrast values lead to small saccade amplitudes (Eq. 6), the system fails
in a straight approach to the wall. b When large saccades are generated
for symmetrical HSE activity, the wall avoidance is successful

To overcome this problem we extended the saccade gen-
eration mechanism by a simple additional rule to determine
the saccade amplitude

a′
s =

{
N − 1 if as = 0

as otherwise
(8)

The system, thus, generates a large saccadic amplitude for
almost symmetrical excitation of the simulated neurons
(dL R < 1 ⇒ as = 0). a′

s then replaces the smallest saccadic
template with the largest one. Note, this rule is only based
on the ad hoc consideration that a large saccade should be
generated when the fly approaches a wall approximately per-
pendicularly and is so close that image expansion velocity is
large.

The result of this additional rule is illustrated by Fig. 9b.
The system generates a large initial saccade avoiding the wall.
Note that the cyberfly now generates large saccades also close
to the centre of the arena, when a small difference in the HSE
signals is encountered, a finding of the model simulation that
is not in contradiction to experimental results. In any case,
the simple extension of the saccadic controller leads to a
much better performance as illustrated by the flight length
histogram shown in Fig. 10. With this extension the cyberfly
collides with the arena wall in only very few cases.

3.3.5 Dependence on the wall texture

It is well known that the responses of the correlation type
motion detector and of the postsynaptic neurons integrat-
ing their responses strongly depend on the textural proper-
ties of a moving pattern (Buchner 1984; Dror et al. 2001;
Eckert and Hamdorf 1981). To test whether the wall avoid-
ance behaviour of the saccadic controller is robust against
changes in texture, we tested the system for different wall
textures. Figure 11 shows exemplarily the result of a simu-
lation experiment (τs = τ f = 10 ms) with the texture (T1)
used for the calibration of the cyberfly in comparison to a tex-
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Fig. 10 Histogram of flight lengths for the saccadic controller with an
additional rule to generate large saccades under symmetrical conditions.
Bars show percentages of flights from 81 different starting positions.
Compare to Fig. 7

ture (T2) generated downscaling of the pattern. Although this
change in pattern cause only a minor change in the position
of the velocity optimum in the steady-state tuning of the sim-
ulated HSE cell, the controller generates differently directed
initial saccades from identical starting conditions. While the
simulated flight in the arena textured with T1 is ended by
a timeout criterion for most starting positions (Fig. 10), the
cyberfly crashes into the arena wall for all tested starting
conditions with texture T2. The wall avoidance behaviour
achieved for texture T1 cannot be regained for texture T2 by
adjusting the controller parameters.

4 Discussion

This paper employs a modelling approach to investigate the
potential functional significance of the strategy of saccadic
flight and gaze control which is a distinguishing feature of
spontaneous flight behaviour of blowflies (Schilstra and van
Hateren 1999; van Hateren and Schilstra 1999). In previous
studies we could show that a population of output neurons in
the blowfly visual motion pathway extracts information about
all self-motion components from the complex optic flow pat-
terns generated on the eyes while the blowfly is flying around
in its environment (Boeddeker et al. 2005; Karmeier et al.
2006; Kern et al. 2005; van Hateren et al. 2005). In the latter
accounts the blowfly’s brain is concluded to use a saccadic
gaze strategy to obtain information between saccades about
the spatial layout of the environment. The low-frequency
membrane potential modulations between saccades provide
information about the translational optic flow components
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Fig. 11 Texture dependent
change in performance.
Exemplary trajectories (saccadic
controller with
symmetry-braking extension,
τ f = 10 ms, τs = 10 ms) for
two random checkerboard
patterns constructed from
differently sized texels. Starting
conditions are identical despite
from the texture. a Texture T1
used for statistics shown in
Fig. 10. b Texture T2 generated
by repetition and scaling of the
same pattern

which are, compared to the rotational flow component, much
larger during these flight segments than during the saccades
(Kern et al. 2005). The translational optic flow is particularly
relevant from a functional point of view, because it provides
relative distance information about the three-dimensional
structure of the environment (Koenderink and van Doorn
1987) and, most likely, represents the only source of spa-
tial information available for an airborne blowfly.

Although the above-mentioned studies show that spatial
information is represented by the visual system between sac-
cades, they do neither tell us how this information can be
extracted nor whether this information is really sufficient to
control the blowfly’s flight behaviour and, in particular, to
prevent the blowfly from colliding with obstacles. This prob-
lem was approached here by developing a cyberfly that is
provided with visual information by mechanisms that mimic
those of the real blowfly. The cyberfly uses this information
to successfully avoid obstacles in a virtual environment in
most cases.

The cyberfly, as presented here, solves only one out of
the many visually guided behavioural tasks of a real fly. This
first version is extremely simplified compared with its biolog-
ical counterpart: (1) It controls movements only in a plane,
whereas real flying blowflies can, of course, move in all three
dimensions and thus have to control six degrees of freedom.
(2) We only took into account one type of output neuron of the
blowfly visual system, the HSE-cell. Being an output neuron
of the system and sensitive to horizontal movement (Hausen
1984), HSE is probably one of the most important neurons
involved in controlling horizontal turns. Nonetheless, several
additional neurons are likely to be involved in visual flight
control, especially if all degrees of freedom of locomotion
are taken into account (Karmeier et al. 2006). (3) The for-
ward velocity generated by the cyberfly was held constant,
although recent observations suggest that blowflies modify
their forward velocity depending on the environmental prop-

erties (Kern et al., in preparation). A similar behaviour was
observed previously in bees (Srinivasan et al. 1996). (4) The
physical constraints of the blowfly flight were not taken into
account for this study. Instead, a phenomenological approach
was taken by controlling the velocity with a proportional con-
trol scheme.

While the proposed simple version of a cyberfly success-
fully avoids collisions with the wall of the flight arena in
most situations, it fails reproducibly when approaching a
wall straight ahead. This is plausible since such an approach
should lead to an almost symmetrical activity in the two sen-
sory input neurons which is transformed to only small sac-
cade amplitudes by the saccadic controller. The generation of
large saccades in response to strong frontal expansion flow,
as discussed recently for Drosophila (Bender and Dickinson
2006) could solve this problem. Similar mechanisms to avoid
frontal expansion were also proposed (Neumann 2004) and
successfully tested on robots (Webb et al. 2004). The gener-
ation of large saccades when approaching a wall perpendicu-
larly can also be accomplished in our cyberfly with a simple
extension of the transformation of the HSE difference signal
into saccade amplitude. If large saccades are generated when
the difference signal of the two HSE-cells is small, the cyber-
fly can also successfully prevent obstacle collision during a
perpendicular approach of a wall.

Our analyses revealed another severe limitation of our cur-
rent simple version of a cyberfly, i.e., the dependence of its
performance of the textural properties of the arena. The tex-
ture dependence of local movement detectors of the correla-
tion type and of the motion induced response of fly tangential
cells is well known (Buchner 1984; Dror et al. 2001; Eck-
ert and Hamdorf 1981). Nevertheless it seems very unlikely
that a fly would fail to avoid the walls of a cylindrical setup
with any of the tested textures, although there is evidence that
they change their flight pattern and velocity when the envi-
ronmental properties are altered (Frye and Dickinson 2007;
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Kern et al., in preparation). The control of the forward flight
speed based on the responses of optic flow processing neu-
rons (see below) may be the key to a more robust behaviour.
We will analyse this in more detail in a forthcoming study.

Despite the simplicity of our approach, the closed-loop
model simulations clearly show that a saccadic flight strat-
egy helps, at least under specific environmental conditions,
the cyberfly to avoid collisions with the wall of our flight
arena. This behaviour of a suitably parameterised saccadic
controller is in stark contrast to the performance of an opto-
motor controller. We could show that, in contrast to an older
hypothesis (Götz 1975), the smooth and continuous optomo-
tor controller is incapable of controlling wall avoidance in our
setup, even if it is parameterised to create a realistic optomo-
tor following response to pure rotational stimuli. However, in
accordance with previous studies (Webb et al. 2004), such a
controller can compensate for systematic asymmetries of the
motor system. For the path stabilisation task, the optomotor
circuit may very well be active in the fly evaluating the optic
flow in parallel to a visual saccadic controller.

All sensory–motor interfaces of the cyberfly tested in the
present study had in common that, in contrast to previous
modelling attempts (see Sect. 1), we used a model of the
blowfly visual motion pathway as sensory input stage that
was parameterised to account for the complex time-
dependent responses of the HSE-cell of real blowflies to
behaviourally generated optic flow (Lindemann et al. 2005),
and that we took the dynamical characteristics of free flight of
blowflies into account. In particular, we analysed the signifi-
cance of sideward drift after saccadic turns that is one of the
most distinguishing features of blowfly flight behaviour. The
sideward components of head and body movements were
concluded to be encoded in the responses of HSE neuron
(Karmeier et al. 2006; Kern et al. 2005, 2006). Sideward
movements could be useful in the context of obstacle avoid-
ance, if the blowfly is oriented perpendicular to an obstacle.
In this case pure forward translation would not lead to an
asymmetric response in the HSE neurons in both halves of
the visual system, whereas sideward movements could lead
to asymmetric responses.

The performance of the cyberfly with a saccadic controller
was found to depend strongly on the strength of sideward drift
after saccades. Although Calliphora HSE signals were con-
cluded to provide information about sideward drift, the cyber-
fly is relatively successful in avoiding collisions with the
arena wall without sideward drift after saccades. This finding
is in accordance with a previous study to model Drosophila
flight behaviour (Reiser and Dickinson 2003). This similarity
in performance is interesting, because the Drosophila model
differs from our cyberfly in at least two relevant ways. (1) The
sensory module of the Drosophila model is based on some
sort of hypothetical expansion detector, whereas at least the
sensory module of the basic version of our saccadic cyberfly

is modelled after an identified output neuron of the blowfly
which strongly responds to optic flow resulting from trans-
latory movements between saccades. (2) The saccade ampli-
tude of the Drosophila model is determined according to a
random distribution independent of the strength of the optic
flow, while only the timing and direction of saccades depend
on the visual motion input. This is quite different for our
cyberfly where also the saccade amplitude depends on the
difference of the responses of HSE-cells in both halves of
the brain. Although a cyberfly without sideward motion may
be appropriate to account for flight behaviour of the small
Drosophila, it cannot account for the much heavier blowflies,
because they show pronounced sideward movements after
saccades (Schilstra and van Hateren 1999). We could show
that a saccadic controller with sideward drift with a short
time constant is slightly superior to a controller without side-
ward drift. A sideward drift component between saccades
may allow the cyberfly to extract the distance information
to frontal obstacles from the translational optic flow. Similar
mechanisms have been investigated in the context of side-
ward peering in locusts and preying mantis (Kral et al. 2000;
Sobel 1990). In accordance with a previous study (Karmeier
et al. 2005), intersaccadic intervals of some ten milliseconds
are sufficiently long for providing the controller with behav-
iourally relevant optic flow information.

The cyberfly has some free parameters in addition to the
time constant of drift decay. These are the time constant
of the threshold decrease, the initial and asymptotic value
of the threshold, the scaling factor of the saccade amplitude,
the thrust control time constants τ f , τs , and the duration of
saccade suppression. Amongst these, the control time con-
stant for the sideward component of the velocity appears to
be the most decisive one with respect to wall avoidance per-
formance.

The current version of the cyberfly is completely deter-
ministic. No noise is added to any stage of the control loop.
However, small variations in the texture, the starting posi-
tions, or the parameters (especially the sideward thrust ampli-
tude) revealed that even tiny differences in the initial input
signals can accumulate to large differences in the final trajec-
tory after some seconds of closed-loop simulation, even if the
initial HSE signals are virtually the same. The introduction
of noise would probably make the trajectories more inde-
pendent of the textural details of the environment, but would
necessitate statistical analysis of a large number of simu-
lation runs multiplying the computational effort for para-
meter optimisation. Adding noise to the sensory part of the
model would be straightforward because the noise statistics
for the HSE neurons simulated in that module are well known
(Warzecha et al. 1998). Some of the noise effects could be
reduced by applying a lowpass filter to the HSE signals before
further processing, but this would add at least one further
parameter.
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Although our basic version of the cyberfly with sideward
drift as observed in real blowflies is already relatively suc-
cessful in obstacle avoidance, it performs still much worse
than the real blowfly. Therefore, the model needs to be elab-
orated in various ways. One elaboration has been proposed
already in the present study by a modified transformation of
the difference signal of the HSE-cells into saccade amplitude.
This modification is, however, a purely formal one without
recourse to experimentally determined neuronal properties.
However, more sophisticated representations of optic flow
parameters may be obtained in a neuronally plausible way
by using the signals of additional optic flow sensors, such as
the other HS-cells and the vertically sensitive VS-cells. These
cells could be used by the saccade controller to provide infor-
mation about self-motion in three dimensions and to control
other flight parameters such as thrust, pitch or height above
the simulated ground.
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