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Grewe, Jan, Nélia Matos, Martin Egelhaaf, and Anne-Kathrin
Warzecha. Implications of functionally different synaptic inputs for
neuronal gain and computational properties of fly visual interneurons.
J Neurophysiol 96: 1838–1847, 2006. First published June 21, 2006;
doi:10.1152/jn.00170.2006. Neurons embedded in networks are
thought to receive synaptic inputs that do not drive them on their own,
but modulate the responsiveness to driving input. Although studies on
brain slices have led to detailed knowledge of how nondriving input
affects dendritic integration, its origin and functional implications
remain unclear. We tackle this issue using an ensemble of fly wide-
field visual interneurons. These neurons offer the opportunity not only
to combine in vivo recording techniques and natural sensory stimu-
lation but also to interpret electrophysiological results in a behavioral
context. By targeted manipulation of the animal’s visual input we find
a pronounced modulating impact of nondriving input, whereas func-
tionally important cellular properties like direction tuning and the
coding of pattern velocity are left almost unaffected. We propose that
the integration of functionally different synaptic inputs is a mecha-
nism that immanently equalizes the ensemble’s sensitivity irrespective
of the specific stimulus conditions.

I N T R O D U C T I O N

Dendritic integration is a central and often highly nonlinear
stage of neuronal information processing. The many different
presynaptic signals a neuron receives have been classified as
drivers and modulators (Sherman and Guillery 1998). Driving
input is thought to carry the relevant information, whereas the
modulating input shapes the neuronal computations without
any driving contribution. Shunting inhibition is one example of
modulating input, which may even veto the driving input
(Koch et al. 1983). Cortical neurons are assumed to be con-
tinually bombarded with excitatory and inhibitory inputs in-
duced by background network activity. The impact of back-
ground activity leads, e.g., to a drop in input resistances in vivo
as compared with those in vitro or in anesthetized animals
when there is only reduced network activity (Destexhe et al.
2003). Accordingly, the background activity has been proposed
to be a mechanism that modulates the gain of a neuron (Chance
et al. 2002; Mitchell and Silver 2003; Prescott and De Koninck
2003). Despite great methodological advances such as the
dynamic-clamp technique, applied to mimic background activ-
ity in slice preparations (Prinz et al. 2004), conclusions about
the functional significance and origin of background input are
still limited.

Here we address the functional significance of modulating
synaptic background input linking cellular physiology with the

functional aspects of encoding and representing visual stimuli.
We investigate how visual shunting input affects the encoding
of visual motion stimuli in fly visual interneurons. The task of
these tangential cells (TCs) is to evaluate optic flow patterns,
i.e., the retinal image flow evoked during self-motion of the
animal (Borst and Haag 2002; Egelhaaf et al. 2002, 2005;
Hausen 1984). Optic flow patterns are the only source of
information about the environmental layout when airborne.
TCs spatially integrate the excitatory and inhibitory outputs of
thousands of retinotopically arranged local motion-sensitive
elements (Brotz et al. 1996). Accordingly, TCs have receptive
fields that cover large parts of the visual field and are tuned to
optic flow as is generated on the eyes during certain types of
translational or rotational self-motion of the animal (Egelhaaf
et al. 2002; Kern et al. 2005; Krapp et al. 2001; van Hateren et
al. 2005). The activation ratio of excitatory and inhibitory
inputs depends on stimulus parameters as pattern contrast and
texture or the direction and velocity of visual motion. Even
during motion in the preferred direction, which distinctly
depolarizes the cell, the inhibitory inputs are activated, al-
though to a much smaller extent than the excitatory input
(Borst et al. 1995; Single et al. 1997). Motion orthogonal to the
preferred direction is assumed to activate both types of inputs
in approximately equal shares, whereas during null-direction mo-
tion the inhibitory input predominates. Fly TCs offer the oppor-
tunity to investigate under in vivo conditions the influence of
selectively manipulated sensory input in a well-established func-
tional context. In this study we examined the functional conse-
quences of modulating input on neuronal sensitivity, direction
tuning, and the representation of the time course of pattern
velocity. Coherent motion as driving input and balanced motion
noise as the modulating background input were combined for
visual stimulation. This decomposition of the visual input into a
driving and a modulating component was done for the sake of
systems analysis only, although under natural conditions TCs are
exposed to optic flow containing motion vectors in a wide range
of directions driving its activity to a different extent or not at all.
Thus in behavioral situations TCs receive inputs that have both
driving and modulating influences.

M E T H O D S

Electrophysiology

Experiments were carried out on 1- to 7-day-old female blowflies
(Calliphora vicina). The animals were prepared as described in
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Warzecha et al. (1993). In short: the flies were briefly anesthetized
with CO2 and fixed ventral side up on a small piece of glass. The head
was bent down and waxed to the thorax to allow access to the
backside of the head. The head-capsule was opened and tissues such
as air sacs, fat bodies, and trachea that cover the lobula plate were
removed. In some preparations we also removed the gut to eliminate
peristaltic movements that can cause disturbances. After preparation,
the flies were adjusted according to the symmetry of the deep
pseudopupil (Franceschini 1975) to ensure that different animals
received the same visual input.

Extracellular recordings

The H1 neuron was recorded extracellulary with self-made tungsten
electrodes. A Ringer-filled glass capillary, through which we could
provide Ringer solution if necessary (for composition see Hausen
1982a), was used as an indifferent electrode. The recorded signals
were amplified by a factor of 3,000, band-pass filtered (corner fre-
quencies of 300 Hz and 3 kHz), and subsequently passed through a
threshold device that transforms detected spikes into uniform pulses.

The H1 neuron was recorded in the left half of the brain in its output
arborization. It can be easily identified by its preferred direction, i.e.,
back-to-front motion in front of the right eye.

Intracellular recordings

VS (vertical system) neurons were recorded in or close to their
main dendrite with sharp electrodes pulled on a Brown/Flaming P-97
Puller (Sutter Instruments) and filled with 2 M KCl. The electrodes
had resistances between 30 and 40 M� and the electrode holder’s
silver wire was chlorided before every recording. We used a SEC
10-L amplifier (npi electronics, Tamm, Germany) operated in bridge
or discontinuous current-clamp (DCC) mode. In DCC mode the
switching frequency was about 8 kHz.

The raw data traces of intra- and extracellular recordings as well as
the thresholded H1 spike trains were sampled at 4 kHz (Daq-
Board2000; IOtech, Cleveland, OH) and stored on hard disk for
off-line analysis. The program for data acquisition was written in
Delphi 7 (Borland Software).

Visual stimulation

Visual stimuli were generated using a VSG 2/3 graphics card
(Cambridge Research Systems, Cambridge, UK) and presented on a
Joyce Scope DM5 monochrome (P-31 phosphor) monitor (Joyce
Electronics, Cambridge, UK). As seen by the fly, the monitor screen
(464 � 375 pixel spatial resolution) had a horizontal and vertical
extent of 127 and 120°, respectively. The screen center was positioned
at 0° elevation and 20° azimuth. At this point, one pixel had a vertical
and horizontal extent of about 0.5°.

Whereas the frame rate was 300 Hz, new stimulus pictures were
presented with 150 Hz. We could disprove time-locking of H1 spikes
to either frequency by cross-correlating 200 response traces to iden-
tical stimulation (data not shown).

The stimuli consisted of two sets of dots moving on the black
screen (luminance: 0.001 cd/m2). The first set of dots, the motion dots,
were randomly positioned in the first frame and moved coherently in
the preferred direction of the recorded TC. These served as driving
input, forming the sensory signal to be encoded by the TCs. Each dot
had a vertical and horizontal extent of three pixels, resulting in an
angular size of about 1.5 � 1.5° as seen by the fly; it was surrounded
by a 6° “forbidden zone” in which no other dot was allowed to be
placed. By varying the number of dots (between 4 and 64) different
movement strengths were produced. The motion dots were always
presented at full brightness (300 cd/m2). The second set of dots
consisted of 112 noise dots, which have the same size and forbidden
zone as those of the motion dots. The noise dots were designed to

constitute the modulating background input. Initially the noise dots
were also randomly placed. In subsequent frames they performed a
random walk, in which eight directions (the horizontal, vertical, and
diagonal directions) were possible. For each time step the direction of
each dot was chosen randomly from a predefined distribution. This
distribution of directions was defined so that the directions into which
the noise dots moved were balanced, i.e., the resulting motion noise
did not, on average, excite or inhibit the recorded neuron. Balancing
was done in control experiments for one sample VS cell and H1 cell.
The distribution of movement directions that led to the best balancing,
that is, with no clear excitation or inhibition, was used for all other
experiments on the same cell type. The strength of the motion noise
was altered by changing the brightness of the noise dots to about 30
cd/m2 (weak motion noise), 150 cd/m2 (medium motion noise), and
300 cd/m2 (strong motion noise). Even the lowest brightness value
was sufficient to significantly affect the neuronal responses, increasing
the firing rate of the H1 neuron when dots of this brightness moved in
the cell’s preferred direction.

As mentioned above, the dots were surrounded by a “forbidden
zone,” in which no other dot occurred. This zone was introduced to
prevent the motion dots and noise dots from interacting on a local
basis, i.e., generating apparent motion. In flies, adapted to total
darkness, it is possible to evoke a weak direction-selective response in
H1 when the two stimuli of an apparent motion paradigm are sepa-
rated �12° (Schuling et al. 1989). Although the flies in our experi-
ments were not completely dark adapted, we could show in a control
experiment that increasing the forbidden zone to �12° (with a
reduced number of dots) or completely separating motion and noise
dots (coherent motion in the top third of the screen and motion noise
in the bottom third or vice versa) does not significantly alter the effect
of motion noise on H1 responses.

Measurements of TC input resistance

The input resistances of VS cells were measured by injecting
200-ms pulses of constant hyperpolarizing current (�0.75 to �1.5
nA) into the cells. Trials with and without current were recorded in a
pseudorandom order that allowed calculation of the input resistances
from direct comparisons of the corresponding response sections (Fig.
2A).

Gain modulation by visual motion noise

To investigate the consequences of motion noise on the sensitivity
of TCs for preferred direction motion, we tested the neuronal re-
sponses to motion stimuli of five different strengths, determined by
the number of dots moving on the screen (4, 8, 16, 32, and 64 dots)
combined with (or without) motion noise. As mentioned above, three
different strengths of motion noise were used. Each trial consisted of
three test sections: 1) coherent motion with the actual number of
motion dots moving, 2) the motion noise alone at a given intensity,
and 3) coherent motion and motion noise combined. These were
alternated with so-called reference sections in which the maximum
number of motion dots moved and breaks showing a stationary image
(Table 1). This image was the first image of the following section.

Direction tuning in the presence of motion noise

A similar stimulus protocol was used to test the direction selectivity
of TCs (Table 1, right). In these reference sections the maximum
number of motion dots moved in the preferred direction of the cell. In
the test sections the coherently moving dots (16 or 64) were moved in
one of the eight tested directions (0–315° in 45° steps). To reduce the
number of conditions (to have a reasonable number of trials for each
condition) we used only the medium and strong motion noises.
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Representation of pattern velocity in the presence of
motion noise

We investigated the representation of pattern velocity with extra-
cellular recordings of the H1 cell because this analysis requires stable
recordings over a longer time than can routinely be accomplished by
intracellular recording. The motion dot velocity was dynamically
modulated (Fig. 6, left column). The underlying velocity profile was
built up from sine waves of 1, 3, 5, 7, and 9 Hz at random phases. The
frequencies were matched to the frequency band in which the H1 cell
codes pattern velocity with a high gain (Warzecha et al. 1998). Here
we used a stimulus protocol consisting of three test sections (dynamic
motion alone, motion noise alone, and the combination of both, each
of 1,000-ms duration). The test sections were separated by stationary
image sections of 5,000-ms duration. The interstimulus interval be-
tween consecutive trials of any experiment was 5,000 ms. This time
was used to save the data and to provide Ringer solution if necessary.

Data analysis

Off-line analysis was done with Matlab Release 14 (The Math-
Works, Natick, MA). To analyze the performance of H1 to encode
stimulus velocity (see above) we used the coherence analysis (Haag
and Borst 1998; van Hateren and Snippe 2001) using the coherence
function distributed with Matlab. For this purpose the responses were
aligned with the velocity profile by removing the response delay
calculated from the cross-correlation of the mean response and the
velocity profile. Both stimulus and response vectors were zero padded
to give 4,096 sample points. Because of the rectification nonlinearity
inherent in the spike-generation process, the H1 can code pattern
velocity only in its preferred direction. Therefore we rectified the
stimulus velocity accordingly and set it to zero if the dots moved in
the null direction. The coherence between stimulus and response was
calculated using a 4,096-point Hanning window and an overlap of
2,048 points. The coherence analysis quantifies the similarity between
the stimulus and the stimulus reconstructed from the responses using
the best linear filter. In the case of a noise-free linear encoder the
coherence is 1 for all frequencies. Deviations from unity could be a

consequence of noise and of nonlinearities in the system. To separate
these two effects the expected coherence (van Hateren and Snippe
2001) was used. The expected coherence is defined as the coherence
between the individual responses and the “noise-free” average re-
sponse. The deviation of the expected coherence from unity can be
traced back to noise in the system. The difference between coherence
and expected coherence arises from the nonlinearities.

To estimate the information that is transmitted by the neuronal
responses about the stimulus the coherence rate was calculated from
the coherence spectrum according to van Hateren and Snippe (2001)

Rcoh � ��
0

�

log2 �1 � �2�df (1)

where Rcoh is the coherence rate and � is the coherence. The expected
coherence rate (Rexp) was calculated accordingly.

Because the interpretation of the coherence rate in terms of trans-
mitted information depends on assumptions that neuronal noise is
Gaussian and additive, an assumption that is not strictly correct, we
additionally calculated the information rate with the measure devel-
oped by Brenner et al. (2000)

I �
1

T�
0

�

dt�r�t�

r� � log2�r�t�

r� � (2)

where T is the number of time bins, r(t) is the time-dependent spike
rate, and r� is the average spike rate. Both measures implicitly assume
that information is encoded by the spike rate of the neuron. This
assumption appears justified as a first approximation because TC
spikes were concluded to lock precisely to the stimulus in a frequency
range of velocity fluctuations that are only weakly represented in TC
responses (Kretzberg et al. 2001; Warzecha et al. 1998).

R E S U L T S

We analyzed the nonlinear dendritic integration of driving
and modulating synaptic input in two types of directionally
selective, motion-sensitive neurons. 1) The H1 neuron (Hausen
1976) offers the opportunity of stable long-lasting extracellular
recordings, which is required for a detailed analysis of coding
properties (Bialek et al. 1991; Warzecha et al. 2000). The H1
cell is excited by back-to-front motion and inhibited by motion
in the opposite direction within almost the entire visual field of
one eye. It uses spikes to transmit information from one brain
hemisphere to the other. 2) The VS cells (Hengstenberg 1982;
Krapp et al. 1998) can be recorded intracellularly and respond
to both downward and upward motion within a broad vertical
stripe of the visual field with graded de- and hyperpolariza-
tions, respectively. These graded membrane potential shifts are
assumed to represent the summated postsynaptic potentials of
the cell and can be recorded even close to the output terminal
of the cells (e.g., Egelhaaf and Warzecha 1999). Because
VS-graded depolarization may be superposed by spikes, rem-
iniscent of the variable spikes observed in cortical neurons
(e.g., Azouz and Gray 1999), VS cells can also be used to study
the transformation of postsynaptic potentials into spikes. In this
study we concentrate on two types of the 10 VS-cells, i.e., VS1
and VS2/3. Because VS2 and VS3 are two cells with largely
overlapping receptive fields and virtually indistinguishable
functional properties (Krapp et al. 1998), they are lumped here
into one category of cells “VS2/3”. The analyzed VS cells have
their receptive fields in the frontal part of the visual field.

To test the influence of modulating input on the response to
a driving visual signal, two types of stimuli were used (Fig. 1,

TABLE 1. Experimental protocol describing the image shown

Duration,
s Gain Modulation Direction Tuning

0.5 Blank screen Blank screen

Reference section

1.0 Pure motion Pure motion
1.0 Stationary image Stationary image

Test section I

1.0 Pure motion (4–64 dots) Pure motion (various directions)
1.0 Stationary image Stationary image

Reference section

1.0 Pure motion Pure motion
1.0 Stationary image Stationary image

Test section II

1.0 Noise (weak, medium, strong) Noise (weak, strong)
1.0 Stationary image Stationary image

Reference section

1.0 Pure motion Pure motion
1.0 Stationary image Stationary image

Test section III

1.0 Motion (4–64 dots) � noise Motion (various directions) �
noise
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insets). 1) The driving visual input consists of a variable
number of dots moving coherently either in the cell’s preferred
or null direction. 2) The modulating input consists of dots
moving in a variety of directions so that excitatory and inhib-
itory effects cancel each other (“motion noise”). The driving
input and the motion noise can be presented individually or
combined. The motion noise component then acts as a modu-
lating background input (see METHODS for details).

Balanced motion noise has shunting characteristics

The motion noise was balanced having no pronounced
driving effect on the membrane potential on its own (Fig. 1A,
right shaded response section). To achieve balance, more dots
were required with a motion component in the null direction
than into the preferred direction of the respective cell. This is
most likely a result of the stronger driving force for the
excitatory currents than that for the inhibitory ones. Although
the motion noise neither excites nor inhibits the neuron con-
siderably, it increases the membrane potential fluctuations
around the resting potential (Fig. 1A, right shaded area). These
fluctuations were smaller in some recordings, like the one
shown in Fig. 2. This might be a consequence of the slight
hyperpolarizing effect of the motion noise in this experiment or
of the different recording sites (close to the dendrites and close
to the output terminals for the experiments shown in Figs. 1
and 2, respectively).

To determine whether motion noise has shunting character-
istics, we measured the changes in input resistance of VS
neurons relative to the resting input resistance induced by
motion noise stimulation and by null-direction motion stimu-
lation, respectively (Fig. 1). The input resistance was estimated
by injecting hyperpolarizing current pulses into the cells. The
VS cell input resistances at rest were on average 6.81 	 2.56

M� (n 
 4 cells), which is in the range reported previously
(Borst and Haag 1996). However, the resting input resistances
varied considerably. In one VS cell (shown in Fig. 1, A and B)
an input resistance of 10.5 M� at rest was measured, deviating
much from the average. We did not find any obvious correla-
tion between the difference in input resistance and the visually
induced responses of VS cells. Anyway, during coherent null-
direction motion, when the cell is hyperpolarized, the input
resistance is decreased relative to the resting input resistance
[4.71 	 2.05 M�; �32.23 	 5.86% (Fig. 1, B and C)]. Motion
noise does not significantly depolarize or hyperpolarize the cell
but it reduces the input resistance to 5.06 	 1.95 M�
[�26.05 	 6.52% (Fig. 1, B and C)]. This reduction is in the
same range, although slightly smaller, as the reduction of the
input resistance during coherent null-direction motion. From
these experiments we conclude that visual motion noise can be
considered a shunting input comparable to the background
input artificially induced in slice preparations (Chance et al.
2002; Mitchell and Silver 2003; Prescott and De Koninck
2003).

Nonlinear integration of motion information

To analyze the effect of motion noise on the neuronal gain
we determined the response amplitudes of VS and H1 cells as
a function of stimulus strength in the presence of motion noise
of different levels. Stimulus strength was modified by varying
the number of coherently moving dots. The strength of the
motion noise was altered by increasing the brightness of the
dots constituting the motion noise.

Whereas both graded postsynaptic potentials and spikes can
be recorded in VS cells (Fig. 2A), the H1 cell allows only spike
responses to be recorded, although for extended periods of time
(Fig. 3). For both response modes of VS cells the cell’s

FIG. 1. Measurement of the tangential cell (TC) input resis-
tance. A: average response of one VS cell (10 trials) to coherent
null-direction motion and to motion noise (first and second
shaded areas). Strongest motion noise was chosen for this
measurement. In half of the trials (black trace) 1-nA hyperpo-
larizing current pulses of 200-ms duration were injected into the
cell. Input resistance was calculated from the difference be-
tween the “current responses” and the “no-current” responses
(black and gray traces, which were recorded alternately). B:
input resistance on single-trial basis (black dots) and on average
across the 5 trials on this condition (asterisks) of the same cell
as shown in A. Input resistances were measured at rest, during
null-direction motion, and motion noise. C: pooled results from
4 VS cells recorded in 4 different animals; each dot is the input
resistance estimated in a single trial. Input resistances are
normalized to the respective input resistances at rest. Different
symbols denote results from the different cells.
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sensitivity to motion stimuli is reduced by motion noise,
independent of motion strength (Figs. 2 and 3). Stronger
motion noise produces larger reductions in response amplitude.
This reduction cannot be explained by a summation of the
respective responses to coherent motion and motion noise (Fig.
2A, left and middle sections). Thus the reduction in responsive-
ness is mainly a result of the shunting effect of the motion
noise. This is true despite the slight hyperpolarization of about
�3.5 mV for the strongest motion noise in the example shown
in Fig. 2A (middle column). Similar reductions were observed
in other recordings in which motion noise led to slight depo-
larizations. The reduction in sensitivity for the driving input
induced by coherent motion is similar for both the graded
membrane potential shift and the spiking response of the VS
recording (compare Fig. 2, A and B). However, the threshold
nonlinearity of spike generation is apparent because strong
motion noise suppresses completely the spike responses to
small and moderate motion strengths. Similar results were

found in two other VS recordings and two recordings from
other TCs (one HSE and one CH cell).

H1 is a spiking tangential cell that we recorded extracel-
lularly. The responses of one sample recording are shown as
peristimulus time histograms (PSTHs) in Fig. 3A. Figure 3B
shows the average characteristics measured in four cells
(similar results were found in four additional recordings that
are not included because a slightly different stimulus pro-
tocol was applied). As for VS cells H1 spike frequency
increases with increasing stimulus strength. When the mo-
tion stimulus is combined with motion noise the response
amplitude is reduced in a similar way as that found in VS
cells. With respect to VS cells, this reduction is present even
if the motion noise induces a slight increase of the spike rate
on its own. Thus the interaction of the input mediated by
coherent motion, on the one hand, and the input by motion
noise, on the other hand, is far from linear. Shunting
inhibition resulting from motion noise has severe conse-

FIG. 2. Influence of motion noise on VS sensitivity to pre-
ferred direction motion. A: individual VS1 responses to coher-
ent preferred direction motion, motion noise, and the combina-
tion of coherent motion and motion noise recorded close to the
axon terminal. These responses were evoked by the strongest
motion stimulus (64 dots moving coherently) and the strongest
motion noise (maximal brightness of the 112 motion noise
dots). VS cells show graded shifts of the membrane potential
superimposed with spikes. B: input–output characteristics of
the graded membrane potential shift on different motion noise
intensities. Motion strength was varied by increasing the num-
ber of dots moving coherently, whereas the intensity of the
motion noise was altered by varying the brightness of the dots
constituting the motion noise (solid line, dashed line with open
circles, dotted line with open squares, and dash–dotted line with
open diamonds represent no, weak, medium, and strong motion
noise, respectively). Response amplitudes are normalized to the
response to the strongest coherent motion (64 dots moving in
preferred direction). C: same as B but for the spike response of
this cell.

FIG. 3. Influence of motion noise on H1 sensitivity to preferred direction motion. A: averaged responses of a single H1 cell shown as peristimulus time
histograms (PSTHs, bin width 20 ms) to coherent preferred direction motion, motion noise, and the combination of coherent motion and motion noise (columns
from left to right) for 3 different motion noise intensities (weak, medium, and strong motion noise in the top, middle, and bottom rows). B: input–output
characteristics averaged over 4 cells recorded in 4 different animals at different motion noise intensities (black solid, dashed, dotted, and dash–dotted lines
represent no, weak, medium, and strong motion noise, respectively; the gray solid line is the spontaneous activity). Error bars are SEs.
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quences on the response amplitude and the cell’s sensitivity
for preferred direction motion.

Robust direction tuning

In which way does motion noise affect the coding properties
of blowfly motion-sensitive TCs? We used the motion noise to
target the robustness of direction tuning of TCs. For this
analysis H1 responses were recorded extracellularly to obtain
sufficiently long and stable recordings. The coherent motion
pattern moved in different directions (45° steps) and was
combined with motion noise. We used three conditions: 1) no
motion noise, 2) medium, and 3) strong motion noise. The
solid lines in Fig. 4 show the direction-tuning curves for
coherent motion alone (64 or 16 motion dots in Fig. 4, A and
B, respectively) averaged across six H1 recordings. The re-
sponse amplitude was normalized to the average response
amplitude determined in the first reference section at the
beginning of the trial where all 64 dots moved coherently in the
cell’s preferred direction (see METHODS). H1 exhibits the typical
broad direction tuning, with an abnormal “dent” in the re-
sponse amplitude at the “preferred direction.” This seemingly
surprising finding is in line with the conclusions drawn by
Buchner (1976). Given the hexagonal lattice of the fly’s eye,
there are three ways to detect for example horizontal move-
ment involving nearest-neighbor interactions (Fig. 4, inset,
shown for left to right movement). In addition to interactions
along the horizontal axis of the eye, there are also strong
interactions along the oblique axes of the ommatidial lattice
(Buchner 1976; Schuling et al. 1989). If the direction sensitiv-
ity of TCs is probed with grating patterns (Hausen 1976,
1982b) the dent in the tuning curve did not appear. In contrast
to stripe patterns, which simultaneously activate all three types
of movement detectors when moving horizontally, the dots
used here (each dot’s size approximates the acceptance angle
of a single photoreceptor) stimulate only one type of detector
at a time. Depending on the relative weight of the different
types of nearest-neighbor interactions, dot stimuli may thus
lead to the dent in the tuning curve observed here.

When the motion stimulus is combined with motion noise,
the peak amplitudes of the direction tuning curve decrease
dramatically (dashed curves in Fig. 4). The tuning width does

not significantly change for the combinations of coherent
motion with medium and strong motion noises (Fig. 4, dashed
and dash–dotted lines). Rather than sharpening, the tuning
curves become slightly broader. With a very weak motion
stimulus of only 16 dots moving in different directions (Fig.
4B), the motion noise reduces the response so much that the
cell’s direction tuning almost vanishes. Nevertheless, if we
take into account that the very weak motion stimulus consists
of only 16 dots and is combined with motion noise consisting
of 112 dots moving in random directions, the direction tuning
can be concluded to be quite robust against motion noise.

Robust representation of pattern velocity

From analyses with white noise velocity fluctuations it is
known that the spike rate of the H1 cell represents the time
course of velocity of a moving pattern up to frequencies of
about 10 Hz, as long as the velocities are sufficiently small
(Bialek et al. 1991; Haag and Borst 1998; Warzecha et al.
1998). Here we tested the velocity coding of the H1 cell when
the dynamic motion signal is corrupted by motion noise. The
motion dots moved with a dynamic velocity profile, which
contained frequencies �10 Hz (Fig. 5, left column). Motion
noise of different strengths was added. To quantify the coding
performance we calculated the coherence (Haag and Borst
1998; van Hateren and Snippe 2001) between the time-depen-
dent velocity profile of the motion stimulus and the neuronal
responses under three conditions: 1) without motion noise, 2)
with weak motion noise, and 3) with strong motion noise (Fig.
5, top, middle, and bottom plots). The time course and ampli-
tude of the H1 responses to the first and the second conditions
are very similar. The spike rate reflects the pattern velocity in
the preferred direction to a certain extent, whereas the null-
direction velocity cannot be resolved because of the rectifying
effect of spike generation. Like the response amplitude, the
overall response power and the coherence spectra under these
two conditions are very similar. The coherence is close to 0.9
for almost the entire tested frequency range (gray solid lines in
Fig. 5). A noise-free linear system would give a coherence of
one. The difference between one and the measured coherence
may be attributable to both the noise and the nonlinearities in
the fly visual motion pathway. To obtain an estimate of the
relative contribution of these two sources, the expected coher-
ences were calculated. The expected coherence (black solid
lines in Fig. 5) is defined as the coherence between the
individual responses and the mean response, which can be
considered the noise-free response if a sufficiently large num-
ber of trials is averaged. The deviation of the expected coher-
ence from one arises from noise in the responses (van Hateren
and Snippe 2001). Consequently, the difference between mea-
sured and expected coherence reflects the nonlinearity of the
system. The data shown in Fig. 5 are based on a single cell with
80 trials per condition. Neither the measured coherence nor the
expected coherence changed much when fewer trials were
evaluated (not shown). Thus the responses to dynamically
varied pattern velocity are quite reliable and the H1 cell is well
able to code stimulus velocity even in the presence of the
motion noise.

When the strong motion noise is added the response ampli-
tude drops in accordance with the results obtained with con-
stant velocity motion. Nonetheless, the time course of the

FIG. 4. H1 direction tuning when combined with motion noise. A: H1
responses as a function of the coherent motion direction (64 dots) without
motion noise (solid line) and combined with medium and strong motion noise
(dashed and dash–dotted lines, respectively); 180° corresponds to the right
H1’s preferred direction. Plots are averages across 6 H1 recordings done in 6
different animals. Error bars represent the SE. Right inset: ommatidial lattice
of the fly compound eye. Dashed lines indicate the 3 different connections
responding to horizontal motion from left to right. B: same as A but with 16
dots moving coherently.
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response is still very similar to that obtained with weak or
without noise (compare the reduction in Figs. 3 and 4). With
the reduced response amplitude the response power drops as
well but the coherence declines only slightly. Although the
decrease is much smaller than the corresponding reduction in
spike frequency, the coherence remains high (between 0.6 and
0.8). This reflects that the time course of the H1 response
scarcely changes and that the pattern velocity is still encoded
very well even though motion noise reduces the spike rate to
roughly 50%. The expected coherence is somewhat lower for
strong motion noise than under the other two stimulus condi-
tions, suggesting that the noise in the responses increases when
the strong motion noise is added to the stimulus.

The information transmitted by spike responses can be
estimated from the coherence spectrum under certain condi-
tions. For additive Gaussian noise, the so-called coherence rate
is related to the Shannon information (van Hateren and Snippe
2001) and is given in bits per second. Even if these require-
ments are not met, the coherence rate can still be treated as an
approximation of the Shannon information. Figure 5 (rightmost
plots) shows the coherence rates and the expected coherence
rates for the three conditions. For this sample recording the
coherence and expected coherence rates are about the same for
the conditions with and without weak motion noise (31.6 and
30.4 bits/s coherence rates and 41.3 and 43.5 bits/s expected
coherence rates), but are reduced to a coherence rate of 26.3
bits/s and an expected coherence rate of 33.7 bits/s when strong
motion noise is added. Again, the coherence rate in the pres-
ence of strong motion noise still amounts to 86.5% of the

coherence rate obtained under the no motion noise condition,
although the spike rate dropped to only 43.6% (49.5 	 3.25
and 21.6 	 2.5 spikes, for no noise and strong motion noise,
respectively). Thus the contribution of a single spike to the
coherence rate is higher when strong motion noise is added to
the dynamic motion stimulus than without added noise. Figure
6 shows the coherence rate per spike for the two conditions
(black symbols) as an average over five cells. We find the
coherence rate per spike almost doubled (0.55 	 0.06 to
1.07 	 0.22 bit/spike under the no-noise condition and strong
motion noise condition, respectively). Similar results were

FIG. 5. Representation of pattern velocity in the H1 responses. Left column: stimulus time course. Positive and negative velocities denote movement in the
preferred and null directions, respectively. Coherent motion following this velocity profile was presented without motion noise and combined with weak and
strong motion noise. Middle column: averaged responses of a single H1 cell (80 stimulus presentations per condition) as PSTHs and the response power
spectrums. Right column: coherence (gray solid line) and expected coherence (black solid line) spectra and expected coherence rates (black) and the coherence
rates (gray) obtained under the 3 conditions (no, weak, and strong motion noise, top to bottom).
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FIG. 6. Information content of individual spikes. Information transmitted
by each single spike is shown for 2 conditions (no motion noise and combined
with strong motion noise). Information was estimated from the coherence
analysis (black symbols) and according to Brenner et al. (2001) (gray sym-
bols). Open symbols represent the information content that would be needed to
fully compensate the loss of spikes.
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obtained using a different measure (Brenner et al. 2000), which
estimates the information transmitted per spike on the basis of
the time-dependent spike rate (0.912 	 0.10 and 1.22 	 0.26
bit/spike for the two conditions; gray symbols in Fig. 6).
Despite the increased information per spike the total transmit-
ted information decreases. The dashed lines in Fig. 6 indicate
the coherence rate (information) per spike that would be
needed to fully counterbalance the decreased spike rate when
strong noise is added to the dynamic motion stimulus. A
similar change in the information per spike was found in the
context of motion adaptation: the loss of spikes was largely
balanced by an increased information per spike (Heitwerth et
al. 2005).

To conclude, H1 is well able to encode the time course of
pattern velocity, even if a dynamically moving pattern is
combined with strong motion noise that reduces the response
amplitude quite drastically. The loss of spikes is partly com-
pensated by the increased information carried by individual
spikes.

D I S C U S S I O N

We addressed how different types of synaptic inputs interact
on dendritic trees under in vivo conditions. By manipulating
the natural sensory input of fly tangential cells (TCs), we find
that visually induced responses and the input resistance of the
cells are strongly affected by motion noise that was designed to
be balanced and not to drive the cell on its own. Although the
response amplitudes to coherent visual motion are strongly
reduced in the presence of motion noise, functionally important
properties such as the direction tuning and the ability to encode
time-varying motion are robust against motion noise. From
these results we hypothesize that the integration of functionally
different synaptic inputs is a mechanism that inherently equal-
izes the ensemble’s sensitivity irrespective of the specific
stimulus conditions.

Integration of functionally different synaptic inputs

Inputs to neurons in the primate lateral geniculate nucleus
were classified as drivers or modulators depending on their
origin (Sherman and Guillery 1998). For rat cortical neurons a
classification was suggested based on the context in which the
inputs are activated rather than on their origin (Chance et al.
2002). Those excitatory and inhibitory inputs that are active at
different times drive the neuron, whereas those active simul-
taneously cancel each other and constitute the modulating
input. Simultaneous activation of excitatory and inhibitory
inputs affects the membrane potential or the firing rate only
slightly, but increases the membrane conductance and there-
fore represents a shunting input. In our stimulus design the
impact of a dot of the motion noise moving in one direction is
counteracted by another dot moving in the opposite direction.
Thus the motion noise as a whole constitutes a modulating
input and does not drive the cell on its own. In contrast, those
inputs that are activated by coherent motion drive the neuron
by either depolarizing or hyperpolarizing it, depending on the
direction of motion. Motion noise was found to reduce the
cell’s sensitivity to simultaneously presented coherent motion
by reducing the cell’s input resistance and can therefore be
considered as a shunting input to the cell. Even though this

classification of the synaptic inputs into drivers and modulators
is artificial in the case of TCs, especially because both com-
ponents are embedded in the same visual input, it is useful for
the system analysis presented here. In the real in vivo situation
the actual role of an input signal depends on the context in
which it is active, as was proposed for cortical neurons
(Chance et al. 2002).

The specific consequences of a shunting input on dendritic
computation of driving inputs is still controversially discussed.
On the level of the postsynaptic potential, a decreased input
resistance acts divisively on driving inputs (e.g., Holt and Koch
1997). The slope of the input–output characteristic is reduced
as the membrane conductance increases. Things appear differ-
ently when the postsynaptic potential is converted into spikes.
Several in vitro and modeling studies concluded that a tonic
shunt then shifts the input–output characteristic along the input
axis (Berman et al. 1992; Connors et al. 1988; Holt and Koch
1997). This is often described as a subtractive effect because it
resembles the effect of a hyperpolarizing input, although the
underlying postsynaptic potential is in fact divisively modu-
lated (e.g., Holt and Koch 1997). Recent analyses mimicking
the natural synaptic input by the dynamic-clamp technique
concluded that shunting can modulate a neuron’s gain resulting
in slope changes of the input–output characteristic (Chance et
al. 2002; Fellous et al. 2003; Mitchell and Silver 2003).
Prerequisite is an increased membrane potential noise induced
as a by-product of the shunting input as is characteristic of
synaptic signals. Consequently, driving stimuli, which on their
own would not suffice to induce spiking, are enabled to cross
the spike threshold, an effect reminiscent of stochastic reso-
nance (e.g., Wiesenfeld and Moss 1995).

In our experiments done under in vivo conditions, the
shunting effect and the increased membrane potential fluctua-
tions induced by the modulating input (Fig. 1) lead, at least in
principle, to conditions for a divisive change of the spike
response. However, the changes observed in the input–output
characteristics (Figs. 2 and 3) do not allow us to infer a shift or
a slope change as the exclusive mechanism. On the other hand,
subtractive and divisive mechanisms affect tuning curves of
spiking neurons very differently: in the case of a subtractive
shift, nonoptimal directions fail to induce spiking and the
tuning curve is sharpened—the so-called iceberg effect (e.g.,
Anderson et al. 2000). As a consequence of a divisive mech-
anism the overall spike rate is scaled but the width of the tuning
curve stays the same. Thus the observed reduction in direc-
tional gain with an almost unaffected tuning width (Fig. 4)
suggests a divisive in favor of a subtractive effect on the H1
spike responses. As mentioned above, this might be the con-
sequence of the increased membrane potential fluctuations at
higher motion noise levels, which allow occasional action
potential generation even at suboptimal directions, i.e., when
the average postsynaptic potential is below spike threshold.
This is in line with conclusions drawn by Anderson et al.
(2000), who showed that membrane potential noise is the key
for contrast-invariant tuning curves in cat complex and simple
cells.

Alternative explanations of gain control

Similar changes of the input–output characteristics as de-
scribed above are also found in simple cells of the macaque
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visual cortex. For instance, the contrast dependency of the
response to an optimally oriented drifting grating is shifted
when simultaneously presented with an orthogonal grating that
has no driving impact of its own. Likewise, superimposed
visual noise reduces the response to the drifting grating (Car-
andini and Heeger 1994; Carandini et al. 1997). These gain
changes were interpreted by shunting input to the considered
neuron mediated by another cortical neuron pooling many local
retinotopic inputs (Carandini and Heeger 1994; Carandini et al.
1997). This scheme is reminiscent of a model originally pro-
posed to account for gain control of fly TCs, which also relies
on a shunting pool cell (Reichardt et al. 1983). Because in later
studies this gain control could be explained in a more parsi-
monious way by realizing—in line with our present findings
that the driving input not only drives the cell, but also leads to
pronounced shunting (Borst et al. 1995)—a similar influence of
the direct peripheral input of cortical cells on the cell’s input
resistance may also play a role in controlling the gain of these
neurons.

Robustness of temporal encoding properties

Both effects of motion noise, the reduced gain and the
increased membrane potential noise, could impair the coding
performance of TCs. Surprisingly, the stimulus time course can
be recovered from the neuronal responses almost as well in the
presence of motion noise as in its absence, although the
corresponding spike rate decreased to 50%. This result seems
to contradict findings that visual flicker impairs the ability of
monkey area MT/MST neurons to discriminate between mo-
tion in different directions (Churan and Ilg 2002). This dis-
crepancy may be a consequence of the method used to dis-
criminate between neuronal responses. Churan and Ilg (2002)
used a measure derived from signal detection theory to dis-
criminate between two alternative directions of motion on the
basis of the mean response to constant velocity stimuli com-
bined with flicker. In contrast, we tested how well the time
course of the dynamic stimulus can be recovered from the
neuronal response.

Functional implications

The fly’s visual system offers the opportunity to link neu-
ronal performance to the animal’s behavior (for reviews see
Egelhaaf and Borst 1993; Egelhaaf et al. 2002; Hausen 1984).
TCs are involved in the evaluation of optic flow and have been
shown to encode information about the three-dimensional
layout of the environment (Kern et al. 2005) as well as certain
self-motions such as body roll (Karmeier et al. 2005; Krapp et
al. 1998, 2001). Some TCs project directly to motoneurons that
control compensatory head movements (Gilbert et al. 1995;
Gronenberg et al. 1995; Milde et al. 1995; Strausfeld et al.
1987).

During aerobatic flight maneuvers the fly induces optic flow,
which is characterized by peculiar patterns of motion vectors
depending on the type of self-motion and the environmental
layout. Although some maneuvers induce motion vectors op-
timally driving a certain TC, they are ineffective for other TCs
(Karmeier et al. 2006). Irrespective of the efficiency of driving
a specific combination of TCs at a given time, the input
resistance and thus the gain of all TCs is decreased regardless

of the actual stimulus situation. Thus under natural conditions
the gains of all TCs can be expected to be about the same level
at any time. This level may be low when the animal is flying
rapidly and thus confronted mainly with rapid retinal motion,
somewhat higher when the animal is walking and thus expe-
riencing mainly slower retinal motion, and at its highest level
when the animal is just sitting and thus experiencing virtually
no motion at all. Thus all TCs are proposed to operate with a
similar gain and thus a similar sensitivity to motion, irrespec-
tive of the overall strength of the optic flow and thereby the
behavioral context. Thus the continuous bombardment with
motion stimuli, although not necessarily driving all TCs, can
equalize the network’s gain, leaving it well able to code for
different parameters as we could show for the direction tuning
of constant motion or a dynamically varying stimulus.
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