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ABSTRACT

The function of a non-protein-coding RNA is often
determined by its structure. Since experimental deter-
mination of RNA structure is time-consuming and
expensive, its computational prediction is of great
interest, and efficient solutions based on thermody-
namic parameters are known. Frequently, however,
the predicted minimum free energy structures are
not the native ones, leading to the necessity of gen-
erating suboptimal solutions. While this can be
accomplished by a number of programs, the user is
often confronted with large outputs of similar struc-
tures, although he or she is interested in structures
with more fundamentaldifferences,or, inotherwords,
with different abstract shapes. Here, we formalize the
concept of abstract shapes and introduce their effi-
cient computation. Each shape of an RNA molecule
comprises a class of similar structures and has a
representative structure of minimal free energy within
the class. Shape analysis is implemented in the
program RNAshapes. We applied RNAshapes to the
prediction of optimal and suboptimal abstract shapes
of severalRNAs.For a given energy range, the number
of shapes is considerably smaller than the number of
structures, and in all cases, the native structures were
among the top shape representatives. This demon-
strates that the researcher can quickly focus on the
structures of interest, without processing up to thou-
sands of near-optimal solutions. We complement this
study with a large-scale analysis of the growth beha-
viour of structure and shape spaces. RNAshapes is
available for download and as an online version on the
Bielefeld Bioinformatics Server.

INTRODUCTION

The function of a non-protein-coding RNA is often determined
by its structure. Since the experimental determination of RNA
structure is time-consuming and expensive, its computational
prediction is of great interest. Efficient solutions based on
thermodynamic parameters have been known since (1), with
improvements in the energy models (2) and extensions to
related questions such as base pair probabilities (3). Ironically,
for one of the most-studied classes of RNA, the transfer RNA

(tRNA), predicted minimum free energy structures are fre-
quently much different from the native cloverleaf structure,
forming an elongated hairpin. This can be explained by the
existence of modified bases in native tRNAs, which leads to
the formation of a structure that is not the optimal under the
energy model used. Similar problems are inaccuracies of the
energy model, different chemical conditions in living cells and
the fact that RNA molecules interact with other molecules that
can alter their conformations. However, it seems reasonable
that the energy of the native structure should not be too far
away from the predicted minimum free energy, and thus the
native structure should be present among suboptimal solutions
in a small energy range above the minimum free energy. This
is addressed by a number of programs that output suboptimal
solutions (4,5). However, the number of suboptimal solutions
grows exponentially with the size of the energy range, for
moderately long sequences reaching several hundred thousand
within an energy range of only a few kcal/mol. The problem
has been tackled either by filtering the output to reduce the
number of similar structures (6) or by directly reducing the
number of solutions with the restriction to canonical structures
(i.e. structures without lone base pairs) (7,8) or saturated struc-
tures (9,10). However, this step either leaves the necessity to
first calculate a huge set of suboptimal solutions or reduces the
output by too small an amount, with the additional danger
of missing the native structure. Related approaches are the
definition of macro-states (11) and statistical sampling of
structures (12).

The user is usually only interested in structures that show
fundamental differences. Small changes, such as additional
base pairs or changing bulge loops are of minor significance.
This can be addressed by modelling RNA structures with a
more coarse-grained representation (13) that preserves more
abstract differences such as the overall branching pattern.
While a definition of an abstract representation is easy, a
mathematical formulation is necessary, first, to ensure that
certain properties hold, and, second, to allow for an efficient
computation of suboptimal abstract representations.

Here, we formalize the concept of abstract shapes and intro-
duce their efficient computation. Based on the notion that
structures are formed by juxtaposition and embedding, we
define abstract shapes in an analogous way, which makes
them homomorphic images of structures. An abstract shape
class has a representative structure with minimum free
energy. Abstract shapes blend perfectly into the frame-
work of Dynamic Programming, which is commonly applied
to the calculation of minimum free energy structures and
related questions, and can thus themselves be computed
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efficiently. The algorithm is implemented in the program
RNAshapes.

We applied RNAshapes to the prediction of optimal and
suboptimal abstract shapes of a tRNA, the HIV-1 leader
RNA and the human small nuclear RNA (snRNA) U2. For
a given energy range, the number of shapes was considerably
smaller than the number of structures, and in all cases, the
native structures were among the top shape representatives.
This demonstrates that the user of RNAshapes can quickly
focus on the structures of interest, without processing up to
thousands of suboptimal solutions.

We complement the exemplary study with a large-scale
analysis of the growth behaviour of structure and shape spaces
on sequences from the Rfam database (14). Although both the
structure and shape space grow exponentially with sequence
length and suboptimal energy range, the shape space grows
considerably slower. For growing sequence lengths or energy
ranges, the ratio of shape space size and structure space size
is decreasing.

RNAshapes is available for download and as an online ver-
sion on the Bielefeld Bioinformatics Server (http://
bibiserv.techfak.uni-bielefeld.de/rnashapes/).

DEFINING ABSTRACT SHAPES

Our aim is to obtain a holistic view of the near-optimal or even
the complete folding space of a given RNA sequence. We shall
partition the folding space into different classes of structures,
by means of abstracting from structural detail. We call these
classes abstract shapes, or shapes for short. To characterize
an RNA molecule by studying its shapes, these classes must
be disjoint. This allows us to collect meaningful statistics. We
may be interested in the number of shapes, the size distribution
of shapes or the distribution of free energy within and across
shapes. Such analyses must be efficiently computable, in spite
of the exponential size of the folding space.

Classes of structures can be defined in many ways, but a
few requirements seem appropriate to catch the intuition of
a ‘shape’: when we feel (either intuitively or in some formal
sense) that two structures are similar, they should either have
the same shape or their shapes should be similar in the same
sense. Within each abstract shape, we want to designate a
concrete structure as its representative, such that looking at
all the representatives gives a meaningful overview of what is
there in the folding space. Furthermore, each abstract shape
should also have an explicit representation, which is not a
concrete structure and independent of primary sequence.
Only then, we can study questions of comparative analysis,
such as can two sequences (of possibly different lengths) fold
into the same shape?

The domain of sequences is closed under juxtaposition-
concatenating sequences s and t, we obtain the sequence st.
The same holds for structures; if x and y are hairpins, and we
paste the 30 end of x to the 50 end of y, then we obtain a
structure that is simply an external loop with two adjacent
hairpin structures. In addition to juxtaposition, structures
are formed by recursive embedding. For example, implanting
three adjacent hairpins into the loop of a fourth, we obtain
a cloverleaf structure. Being formed by juxtaposition and
embedding, structures are inherently tree-like. Although

they can be represented in many ways—such as strings, circle
graphs, squiggle plots or base pair lists—a tree representation
is the one that can be used for all purposes without introducing
artefacts or losing explicit information. In data type theory,
this is called an initial data type: there is a simple mapping
from the initial data type to any other representation, while
an inverse mapping may be more complicated or may not
even exist.

We want shapes to be homomorphic images of structures,
which means that when structure x is embedded in structure y,
then the shape of x is also embedded in the shape of y. For this
reason, the principles of juxtaposition and embedding must
apply to the shape domain as well. Before going into technical
detail, we arrive at the following definitions:

Definition 1. Let S be the tree-like domain of structures,
and P a tree-like domain of shapes. A shape abstraction is
a mapping p from S to P that preserves juxtaposition and
embedding.

Two structures x and y have the same shape whenp(x) = p(y).
Two sequences s and t have a common shape if they have
structures xs and xt such that p(xs) = p(xt). To compare the
shapes of two structures, they need not have the same primary
sequence, or even sequence similarity or equal sequence
lengths. Turning now to the folding space F(s) of a given
RNA sequence s, we define the desired classes as inverse
images of p:

Definition 2. For a given RNA sequence s, its (concrete)
folding space F(s) is the set of all legal structures according
to the rules of base pairing. Its (abstract) shape space is
P(s) = fp(x) j x 2 F(s)}. The class of p-shaped structures in
F(s) is fx j x 2 F(s), p(x) = p}.

In other words, the shape class p is p�1(p) \ F(s). As the
inverse image of a function always induces an equivalence
relation, we can define unique representatives:

Definition 3. The representative structure p̂p for shape
class p is the element that has minimal free energy among
all structures in the class.

There is the rare case that two structures in a shape have
the same energy, in which case we consider the smallest one
under a lexicographic ordering on trees as the representative.

The shape representative structures will be called shreps
for short, to distinguish them from an explicit representation
of the shape as a whole, which we will introduce below.

The above definitions must be complemented by concrete
data structures representing RNA structures and shapes. We
now develop one such concretization that seems convenient
and intuitive, but others might work just as well (see Appen-
dix). For simplicity of presentation, we refrain from modelling
dangling bases at the end of helices, but this could be added.

The different structural components in RNA are single-
stranded regions, hairpin loops, stacking regions, bulges on
the 50 or on the 30 side, internal loops and multiloops. Further-
more, we have lists of adjacent structures, such as the
components of the external loop. Pseudoknots that can be
represented as trees, such as the canonical simple recursive
pseudoknots introduced by R. Giegerich and J. Reeder (sub-
mitted for publication), could also be included, but we choose
to ignore them here. The above structural components are
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denoted by node labels SS, HL, SR, BL and BR, IL, ML and
AD, respectively. For technical reasons, we need a label to
denote an empty list of adjacent components (E). Individual
nucleotides A, C, G and U, as well as strings thereof, represent
themselves. Figure 1 shows a particular structure in several
representations, including the one defined here. Note that in
the tree representation, the primary sequence can be read from
the leaves of the tree in left to right (50 to 30) order. In the text
and for computer input, trees will be written as formulas, such
as AD(SS(ACGUU), E) or AD(HL(C, UUU, G), E).

In the domain of shapes, we only care about open and closed
structures, branching and adjacency. These situations are
represented by node labels OP, CL, FK (from ‘fork’, as BR is
already used above), AD and E. (Re-using AD and E in the
domain of shapes should not give rise to confusion; they are
just generic list constructors.)

The abstraction mapping p from structures to shapes is
defined by the following equations. We use variables a and
b for nucleotides l and l0 for loop sequences, c for a list of
adjacent components and x for arbitrary structures.

p SS lð Þð Þ = OP 1

p HL a, l, bð Þð Þ = CL 2

p SR a, x, bð Þð Þ = p xð Þ 3

p BL a, l, x, bð Þð Þ = p xð Þ 4

p BR a, x, l, bð Þð Þ = p xð Þ 5

p IL a, l, x, l0, bð Þð Þ = p xð Þ 6

p ML a, c, bð Þð Þ = FK p cð Þð Þ 7

p AD SS lð Þ, cð Þð Þ = p cð Þ 8

p AD x, cð Þð Þ = AD p xð Þ,p cð Þð Þ for x „ SS lð Þ 9

p Eð Þ = E 10

It is easy to see that this abstraction function retains hairpins
and multiloops, but abstracts from stack lengths, bulges, inter-
nal loops and single-stranded regions (except in the case of the
completely unpaired structure). It completely abstracts from
primary sequence. This abstraction might be too strong in
some cases, especially with short sequences that do not
have much chance to show shape variation on this level of
abstraction. In such cases, weaker abstraction functions that
retain more structural detail can be defined in a similar
way. Our tool RNAshapes supports five different abstraction
functions.

Although all the computational analysis of shapes is based
on these tree representations, it is convenient for the human
eye to introduce string representations for structures as well
as for shapes. We define a notation for shapes, using

(a)

(c)

(d)

(e)

(f)

(b)

Figure 1. Representations of RNA secondary structure. (a) Primary sequence, (b) Vienna, (c) ASCII-tree, (d) squiggle, (e) shape and (f) tree.
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homomorphism nP as follows: . . . k means k dots, j l j is the
length of string l and e denotes the empty string.

nP OPð Þ = _ 11

nP CLð Þ = ½ 
 12

nP FK cð Þð Þ = nP cð Þ½ 
 13

nP AD x, cð Þð Þ = nP xð ÞnP cð Þ 14

nP Eð Þ = e 15

This is analogous to the familiar ‘Vienna’ notation for struc-
tures, here defined as nS:

nS SS lð Þð Þ = � � � j l j 16

nS HL a, l, bð Þð Þ = ð� � � j l j Þ 17

nS SR a, x, bð Þð Þ = nS xð Þð Þ 18

nS BL a, l, x, bð Þð Þ = ð� � � j l j nS xð ÞÞ 19

nS BR a, x, l, bð Þð Þ = ðnS xð Þ� � � j l j Þ 20

nS IL a, l, x, l0, bð Þð Þ = ð� � � j l j nS xð Þ� � � j l j Þ 21

nS ML a, x, bð Þð Þ = nS xð Þð Þ 22

nS AD x, cð Þð Þ = nS xð ÞnS cð Þ 23

nS Eð Þ = e 24

Note the simple recursive definitions, whereas a direct
definition of the mapping from the Vienna string nS(x) to the
corresponding shape’s notation nP(p(x)) requires a parsing
function. Such simplicity is the advantage of using a tree
representation. Figure 2 shows some structures in Vienna nota-
tion, together with their shape notation under the abstraction
function p.

Any sensible notation function must be injective, i.e. it must
not map two distinct objects to the same notation. This appears
to be violated, as nS(IL(a, l, x, l0, b)) = nS(ML(a, AD(x, E), b)) =
(nS(x)). However, the recurrences that analyse the search space
have been designed to be unambiguous (15), and hence a
candidate of the form ML(a, AD(x, E), b), a non-branching
multiloop, is never considered. With this in mind, it is easy
to show that both nS and nP are injective. Hence, our program
RNAshapes can keep the tree representations for itself, and
faithfully communicate with its users via the string represen-
tations of structures and shapes.

Implementing shape analysis for a given RNA sequence s
would be impractical if we had to compute first F(s) and
then map it into shapes via p. We would suffer from exactly

the exponential explosion we want to circumvent. The the-
ory of dynamic programming tells us that a given dynamic
programming algorithm can efficiently compute any homo-
morphic image of its search space (16) as long as the asso-
ciated objective function satisfies Bellman’s principle of
optimality, which means that the application of the objective
function can be interleaved with the solution of subpro-
blems. In RNA folding, the search space is F(s), and homo-
morphic images are F(s) itself, base pair maximization, free
energy minimization, exact counts and E-values, shapes,
vienna strings, shape strings, shreps as vienna strings and
more. Moreover, we can use them in various combina-
tions via the so-called product algebras (R. Giegerich and
P. Steffen, manuscript in preparation). In the application
section, we show analyses that compute all the shapes of
near-optimal structures, together with their shreps, for a
certain energy threshold. We also present analyses on the
size of the shape space P(s) in comparison with the size of
the structure space F(s). We shall not discuss implementa-
tion details here; readable (as well as executable) code can
be obtained from the RNAshapes web site. Let us turn to the
applications.

APPLICATIONS

The programs used in this section are RNAshapes for the
prediction of shapes and shreps, and RNAsubopt from the
Vienna RNA package (7) for complete suboptimal folding.
They both rely on the thermodynamic energy parameters
presented in (2).

Transfer RNA

tRNAs are one of the best analysed RNA families. Various
experiments have revealed the biological active structure of
tRNAs which is known as the cloverleaf structure. In contrast
to this we found that out of 99 tRNA sequences from the Rfam
database (14), only 30 have a cloverleaf as their predicted mfe
structure (data not shown). The biological explanation for this
is that tRNAs possess modified bases which may on the one
hand be no longer capable of forming base pairs, or on the
other hand are able to interact in a different way. This alters the
free energy of the predicted conformation such that it rises
above the free energy of the cloverleaf (or vice versa), letting
the latter achieve the energetic optimum. For structure pre-
diction, when the modifications are unknown, current practice
is to calculate suboptimal structures for a certain energy range
and to subsequently search (by eye or by a simple pattern
matching algorithm) for the cloverleaf structure in the list
of suboptimals. For tRNAs this means that about 50–300
structures have to be checked. To give an example we
chose the Natronobacterium pharaonis tRNA for alanine
(EMBL accession no. AB003409.1/96-167). The predicted
mfe structure is one hairpin with three internal loops, as
depicted in Figure 2a. The cloverleaf structure, shown in
Figure 2c appears at position 104 in the energy sorted list
of 199 suboptimals, produced by RNAsubopt in an energy
range of 5 kcal/mol above the mfe. Using RNAshapes, we
get three shapes of which the rank 3 shrep is the cloverleaf
structure. The output of RNAshapes and the squiggle plots for
the shreps are shown in Figure 2.
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Leader of HIV-1 genome

The full-length HIV-1 RNA serves both as messenger RNA
(mRNA) and as the viral genome. The untranslated leader of
this RNA carries several regulatory elements. Their regulatory
functions can be roughly divided into two groups: regulation
of gene expression (transcription, translation, etc.) and virion-
associated functions (dimerization, reverse transcription, etc.).
Laborious experiments by Huthoff and Berkhout (17) showed
that this dual nature goes parallel with two alternating
conformations, a branched structure (S2) and a more stable

structure (S1), which mainly consists of two adjacent helices.
Structure prediction in an energy range of 3 kcal/mol based
on the approach of abstract shapes revealed three shreps which
are shown in Figure 3a–c. Figure 3a shows the mfe structure,
which corresponds to the aforementioned structure S1. The
third shrep (Figure 3c) shows good correspondence to the
conformation S2. Further analysis, with a relaxed energy
threshold of 6 kcal/mol produced 19 shreps and revealed
that shrep 12 (Figure 3d) is equal to S2. Summarizing this
means that 19 shreps had to be checked until both correct
conformations could be identified. Performing the same
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Figure 2. Predicted shreps for N.pharaonis tRNA-alanine in an energy range of 5 kcal/mol above the mfe. This energy range holds 199 structures. (a) 1st shrep:
�35.9 kcal/mol; (b) 2nd shrep: �32.2 kcal/mol; and (c) 3rd shrep: �31.7 kcal/mol; (d) output of RNAshapes.

(a) (b) (c) (d)

G
G
U

CU
C
UC

U
G

G
U

U
A

G
AC

C
A

G
AU
UUG

A
G

C
C

UG
G
G

A G
C

U
C

U
C

U
G

G
C

U
A

A
C

U
G

G
G

A
A

C C
C
A C

U
G C

U
UAAG

C
C

U
CAA

U
A

A A G
C
U

U
G

C
C
U U

G
A G

U
G

C
U

U
C

AAG
U

A
GU

G
U G U

G
C

C
C G

U
C

U
G

U
U

G

U G
U
G

A C
U

C
U

G
G

UA
A
C
U
AG

A
G

A
U C

C
C
U
CA

G
AC

C
C

U
U

U
U

A

G
U

C
A
G U

G
U

G
G

A
A

A A
U

CU
C

U
AG

C
A
GU

G
G

CG
C C C

G A
A
C

AGGG A
C
U
U

GAAA
G
C
G

A
A

A
G

G
G

A
AA

C
C

A
G

A
G
G

AG
CU
CU

CUC
G

A
CG

CAG
G

A
C
U

CG
G

C
U

U
G

C
U

G
A

A
G

C
G

C
GC

A
CG

G
C

A
A

G
A

G
G

C
G

A
G
GG

G
A G

G
U

CU
C
UC

U
G

G
U

U
A

G
AC

C
A

G
AU
UUG

A
G

C
C

UG
G
G

A G
C

U
C

U
C

U
G

G
C

U
A

A
C

U
G

G
G

A
A

C C
C
A C

U
G C

U
UAAG

C
C

U
CAA

U
A

A A G
C
U

U
G

C
C
U U

G
A G

U
G

C
U

U
C

AAG
U

A
GU

G
U G U

G
C

C
C G

U
C

UGUU
G

U
G

U
G

A C
U

C
U

G
G

UA
A
C
U
AG

A
G

A
U C

C
C
U
CA

G
AC

C
C

U
U

U
U

A

G
U

C
A
G U

G
U

G
G

A
A

A A
U

CU
C

U
AG

C
A
GU

G
G

CG
C C C

G A
A
C

AGGG A
C
U
U

GAAA
G
C
G

A
A

A
G

G
G

A
AA

C
C

A
G

A
G
G A G C

U
CU

CUC
GA

C
G

C
A

G
G

A
C
U

CG
G

C
U

U
G

C
U

G
A

A
G

C
G

C
GC

A
CG

G
C

A
A

G
A

G
G

C
G

A
G
GG

G
A

G
G

U
C
U
C
U
CUG

G
U

U
A

G
AC

C
A

G
AU
UUG

A
G

C
C

UG
G
G

A G
C

U
C

U
C

U
G

G
C

U
A

A
C

U
GGGA

ACC
CACUGCUUAAGCCUCAA

UAAA
G
C
U

U G C
C
U U G A GUG C U UCA A G U A G U G U

G U G
C C C

G
U C U G U U G U G U G

A C
U

C
U

G
G

UA
A
C
U
AG

A
G

A
U C

C
C
U
CA

G
AC

C
C

U
U

U
U

A

G
U

C
A
G U

G
U

G
G

A
A

A A
U

CU
C

U
AG

C
A
GU

G
G

CG
C C C

G A
A
C

AGGG A
C
U
U

GAAA
G
C
G

A
A

A
G

G
G

A
AA

C
C

A
G

A
GG
AG

C
UCUC

U
C

GAC
G

C
A

G
G A

C
U

CG
G
C

U
U

G
C

U
G

A
A

G
CGCGCACGGCAAGA

G
GC

G
A
G
G
G
G

A

G
G

U
CU

C
UC

U
G

G
U

U
A

G
AC

C
A

G
AU
UUG

A
G

C
C

UG
G
G

A G
C

U
C

U
C

U
G

G
C

U
A

A
C

U
G

G
G

A
A

C
C

CACUGCUUAAGCCUCAA
UAAA

G
C
U

U G C
C
U U G A GUG C U UCA A G U A G U G

UG UG
C C C

G U C

U G
U

U
G U

G
U

G

A C
U

C
U

G
G

UA
A
C
U
AG

A
G

A
U C

C
C
U
CA

G
AC

C
C

U
U

U
U

A

G
U

C
A
G U

G
U

G
G

A
A

A A
U

CU
C

U
AG

C
A
GU

G
G

CG
C C C

G A
A
C

AGGG A
C
U
U

GAAA
G
C
G

A
A

A
G

G
G

A
AA

C
C

A
G

A
G
G A G C

U
CU

CUCGAC
G

C
A

GG
A

CU
CG
GC
U
U
G
C
U
G A

A
G
C

GCG
C
A
C

G
G

C
A

A
GAGGCGA

GGGG

A
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approach based on complete suboptimal folding and
not considering lonely base pairs would have meant checking
approximately 200 000 structures.

Human snRNA U2

Human snRNA U2 is an essential part of the spliceosome and
forms five stem–loops, of which four are present in the pre-
dicted energy-optimal structure (Figure 4a). The second
shrep has all five stems and an additional central helix
(Figure 4b). As shown in Figure 4, a third shape is present
in the near-optimal structure space which implies structural
variability. The same three conformations have been predicted
based on the paRNAss approach presented in Voss et al. (18).
Conversely, the structure of U2 snRNA is supposed to be
important for its correct function and therefore it should
have evolved to exclude equally stable but dissimilar confor-
mations in which it could get trapped and thereby inactivated.
The spliceosome is a dynamic assembly of snRNAs (U1, U2,
U4, U5 and U6) and numerous associated proteins (19).
Hence, a solution to the above contradiction could be that
the active conformation of U2 snRNA gets stabilized by
these RNAs and proteins. Kitagawa et al. (20) analysed
human snRNA U2, and in contrast proposed only one promi-
nent structure in the folding space. Their findings are probably
due to the use of MFOLD (21), which produces a heuristic
subset of all feasible structures, and their coarse grained ‘tree
representation distance’.

Size of the shape space

For any RNA sequence s, the number of suboptimal structures
grows exponential with the sequence length N (22) as well as
with the considered energy range above the mfe. For example,
for the leader of HIV-1, with a sequence length of 281 nt, and
in an energy range of 6 kcal/mol the number of suboptimal
structures exceeds 200 000 even when restricting to structures
without isolated base pairs. In contrast to this, the number
of shreps is 19, and thus stays significantly smaller. In
order to reveal more general properties about the growth beha-
viour of the folding space F(s) and the shape space P(s),
we analysed sequences from the Rfam data base (14) with

lengths ranging from 20 to 300 nt in an energy range of
5 kcal/mol. Additionally, sequences of length �100 nt for
energy ranges from 0 to 10 kcal/mol were examined to reveal
the influence of the energy range. As a last experiment, we
estimated the base of the exponential expression relating the
number of structures (without isolated base pairs) and
shapes, respectively, to the sequence length N [size(F(s)) =
cF 
 aN, size(P(s)) = cP 
 bN]. For this purpose, we computed
the number of all possible structures and shapes for random
sequences of various lengths. We chose 30 sequences for
each length; for the shape analysis at length 120 only one
data point was calculated due to computational constraints.
Figure 5a and b illustrates the slower (but still exponential)
growth of P(s) compared to F(s) with growing sequence
length in an energy range of 5 kcal/mol above the mfe. For
a growing energy range but fixed sequence length, P(s) grows
slower (but still exponential) than F(s), too (data not shown).
The ratio of shapes to structures is decreasing (asymptotically)
with growing sequence length as well as with growing energy
range (see Figure 5c and d). This also expresses the differences
in growth rates between P(s) and F(s) for either sequence
length or energy range. Figure 5e shows the overall number
of structures and shapes for random sequences of increasing
length. Their approximation by functions exponential in
sequence length N gives estimates for size(F(s)) and
size(P(s)). Our analyses lead to size(F(s)) � 0.04 
 1.4N

and size(P(s)) � 0.21 
 1.1N.

DISCUSSION

We have introduced the concept of abstract shapes and their
efficient computation. We showed that the number of near-
optimal structures that a researcher has to process either by eye
or by automatic post-filtering approaches can be reduced from
several hundred thousands to only a few. This dramatic reduc-
tion of output is a major relief for the researcher who is now
very quickly directed to alternative solutions with interesting
differences. The computation of shapes and shreps is not a
heuristics. It is based on a complete evaluation of the folding
space. Looking at, say, the top 10 shapes of some RNA gives
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an unbiased view of its potentially relevant structures. Hence,
it might be useful to record shape information as a very
compact index in the databases that classify non-coding
RNA, such as Rfam (14) or SCOR (23). Using exact string
matching on shape representations, a researcher could quickly

obtain a pre-classification of a novel RNA before resorting to
more expensive methods.

The advantage of using shapes gets even larger in compara-
tive studies of secondary structures. For example, structural
motifs, such as the Iron Responsive Element, can be identified

(a) (b)

(c) (d)

(e)

Figure 5. Comparison of folding space and shape space. (a) Growth of structure space, respective shape space with sequence length (energy range 5 kcal/mol).
(b) Growth of structure space, respective shape space with sequence length (energy range 5 kcal/mol, log-scale). (c) Shape/structure ratio for growing sequence length
(energy range 5 kcal/mol). (d) Shape/structure ratio for growing energy range (n = 100). (e) Overall number of structures, respective shapes (log-scale) with growing
sequence length.
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by a multiple local structure alignment of suboptimal solutions
from various co-regulated RNA sequences. If only two such
sequences are analysed, the number of necessary pairwise
comparisons grows already quadratic with the number of
suboptimal solutions. Thus, the computational burden can
be reduced with the computation of abstract shapes in a quad-
ratic way, too.

The concept of abstract shapes is very flexible and allows
alternative definitions with only little extra implementation
effort. The definition of choice depends on the actual analysis.
In this paper, we demonstrated the usefulness of our approach
for RNAs that show major differences in their alternative
conformations, e.g. the hairpin and cloverleaf structures of
tRNAs. For other types of RNA, a finer shape definition
might be of interest. For example, in miRNA precursors,
one might be interested in the number and positions of indi-
vidual bulges instead of abstracting to the level of complete
hairpins. A shape abstraction function p0, implementing this
idea, is shown in the Appendix.

We see two further problems that may be adressed with
the ideas presented here. One problem is the fact that mfe
structure prediction can go wrong as it does not consider
the folding kinetics. Having reduced the near-optimal
folding space to a handful of shreps, they may go under
closer (and more expensive) scrutiny as to the viability of
their folding path. This would require a systematic study,
using cases where there is a known effect of folding
kinetics, of the question whether the folding path affects
the shape of the native fold, the structure within the
shape (as the shrep of the native shape need not be the
native structure), or possibly both.

The other open problem is the de novo prediction of non-
coding RNA genes. It seems plausible that an RNA driven by
evolution to attain a specific, functional structure should
carry some signal that can be detected. Previous attempts focus-
ing on lower-than-average mfe have not been successful, as
shown in (24). We have tested the hypothesis that a functional
RNA, compared to mRNA, should have a smaller number of
shapes in a certain range above mfe, but the results were not
conclusive (data not shown). However, taking into account
the folding path, as discussed above, this could be a promis-
ing road to follow.
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APPENDIX

Appendix A: an alternative shape abstraction

To obtain a less abstract version of shapes, we would consider
CL as a unary operator and define the shape abstraction mapping
p0 as follows:

p0 SS lð Þð Þ = OP

p0 HL a, l, bð Þð Þ = CL OPð Þ

p0 SR a, x, bð Þð Þ = p0 xð Þ

4850 Nucleic Acids Research, 2004, Vol. 32, No. 16

praktikum2-ub
Rechteck



p0 BL a, l, x, bð Þð Þ = CL AD OP, AD p0 xð Þ, Eð Þð Þð Þ

p0 BR a, x, l, bð Þð Þ = CL AD p0 xð Þ, AD OP, Eð Þð Þð Þ

p0 IL a, l, x, l0, bð Þð Þ = CL AD OP, AD p0 xð Þ, AD OP, Eð Þð Þð Þð Þ

p0 ML a, c, bð Þð Þ = FK p0 cð Þð Þ

p0 AD SS lð Þ, cð Þð Þ = p0 cð Þ

p0 AD x, cð Þð Þ = AD p0 xð Þ,p0 cð Þð Þ

p0 Eð Þ = E

The representation mapping nP must be adjusted to CL now
having an argument by replacing Equation 12 with

nP CL xð Þð Þ = nP xð Þ½ 


Under abstraction p0, two structures like (( . . . (( . . . )))) and
(((( . . . )) . . . )) now belong to different shapes, [_[_]] and
[[_]_], where under p, they both belong to shape [].

It should be clear that intermediate levels of abstraction are
also possible, e.g. by retaining bulges only when they are
longer than a single nucleotide.

Appendix B: implementation details

RNAshapes makes use of a grammar describing the folding
space of RNA including dangling bases and disallowing iso-
lated base pairs. The evaluation is based on algebras like the
ones shown in Equations 11–15 and 16–24 for shapes and
‘Vienna’ notation, respectively. Analogous to these examples,

an algebra for free energy calculation scores the structural
elements with their energy contribution obtained from the
thermodynamic energy parameters. Our implementation
makes use of a combination of these three algebras in a
triple-algebra of the form: (energy, shape, ‘Vienna’ notation).
The essential part of the implementation is the objective func-
tion h which filters the list of (intermediate) solutions and
keeps entries with lowest free energy for each distinct
shape. It is defined as follows:

h s1, . . . , sn½ 
ð Þ = ĥh ½ 
, filter e_range, s1, . . . , sn½ 
ð Þð Þ, where

ĥhð½sh1, . . . , shm
, ½s1, . . . , sn
Þ

= ĥhðinsertðs1, ½sh1, . . . , shm
Þ; s2, . . . , sn½ 
Þ, where

insert xe, xs, xvð Þ, ½ 
ð Þ = xe, xs, xvð Þ½ 


insert xe,xs,xvð Þ, ye,ys,yvð Þ1, . . . , ye,ys,yvð Þm

� �� �

=

½ðye,ys,yvÞ1, . . . 
, xs = ys && xe > ye

½ðxe,xs,xvÞ, ye,ys,yvð Þ2, . . .
�
, xs = ys && xe < ye

ye,ys,yvð Þ1, insert xe,xs,xvð Þ, ye,ys,yvð Þ2, . . .
� �� �� �

, xs „ ys

8>>>><
>>>>:

sk refers to an (intermediate) solution and shk to an (intermedi-
ate) ‘shape-optimal’ solution, where ‘shape-optimal’ means
that it attains the (so far) lowest free energy for its shape.
sk and shk are both of the triple-form (energy, shape, ‘Vienna’
notation). The function filter removes solutions that have
higher free energy than the current minimal solution plus
the chosen energy range (e_range).
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