
BIOINFORMATICS Vol. 19 Suppl. 2 2003, pages ii189–ii195
DOI: 10.1093/bioinformatics/btg1077

Divide-and-conquer multiple alignment with
segment-based constraints

Michael Sammeth 1,∗, Burkhard Morgenstern 2 and Jens Stoye 1

1Bielefeld University, Department of Genome Informatics, Technical Faculty, P.O. 10
01 31, 33594 Bielefeld, Germany and 2University of Göttingen, Department of
Bioinformatics, Institute of Microbiology and Genetics, Goldschmidtstr. 1, 37077
Göttingen, Germany

Received on March 17, 2003; accepted on June 9, 2003

ABSTRACT
A large number of methods for multiple sequence align-
ment are currenty available. Recent benchmarking tests
demonstrated that strengths and drawbacks of these
methods differ substantially. Global strategies can be
outperformed by approaches based on local similarities
and vice versa, depending on the characteristics of the
input sequences. In recent years, mixed approaches
that include both global and local features have shown
promising results. Herein, we introduce a new algorithm
for multiple sequence alignment that integrates the global
divide-and-conquer approach with the local segment-
based approach, thereby combining the strengths of those
two strategies.
Contact: micha@sammeth.net

1 INTRODUCTION
Automatic generation of multiple alignments is a central
task of computational biology. Although diverse methods
are now available, no final solution applicable in all
possible alignment situations has been found Notredame
(2002). Traditionally, there exist two opposed strategies
of alignment construction, one creating global alignments
and the other one detecting local similarities among the
input sequences.

For global alignment, simultaneous approaches create
alignments by synchronising the information of all
input sequences in a k-dimensional lattice. Although
highly elaborated algorithms have been developed to
narrow regions of interest within this lattice Gupta
(1995); Tönges et al. (1996), these approaches are
computationally expensive so that their application is
limited. For this reason, alternative approaches have
been developed where the multiple alignment problem is
reduced to a series of pairwise profile alignments Feng
and Doolittle (1987); Higgins and Sharp (1988); Taylor

∗To whom correspondence should be addressed.

(1988); the most popular of these progressive methods is
CLUSTAL W Thompson et al. (1994). However, a serious
drawback of this technique is that the resulting multiple
alignments crucially depend on the order in which the
profile alignments are carried out.

To cope with more locally related sequence sets, a
number of alternative approaches have been proposed
that focus on locally related segments of the sequences
Depiereux et al. (1997); Morgenstern et al. (1996);
Schuler et al. (1991); Vingron and Argos (1991). These
approaches are superior to more traditional strategies in
situations where large gaps need to be inserted into the
alignment and for data sets that are evolutionarily distantly
related. However, they may be outperformed by global
methods where sequence sets are related over their entire
length Lassmann and Sonnhammer (2002); Thompson et
al. (1999).

Obviously, it is highly desirable to have alignment
algorithms performing well on both, globally and locally
related sequences. Notredame et al. proposed an approach
where both, local and global alignment information, is
pairwisely preprocessed and extended to the multiple
context in a heuristic solution of the maximum weight
trace problem Kececioglu (1993). Biasing those pre-
processed similarities improved the results of standard
progressive alignment, and the resulting procedure has
been implemented in the program T-COFFEE Notredame
et al. (2000). Moreover, Myers et al. developed an algo-
rithm for progressive multiple alignment with constraints
Myers et al. (1996). Herein, we introduce an algorithm
that performs simultaneous multiple alignment under
constraints given by pre-calculated local sequence sim-
ilarities. In our implementation, we combine the global
divide-and-conquer algorithm DCA Stoye (1998) with
the local segment-based program DIALIGN Morgenstern
(1999). We evaluate this mixed method and compare
its results to both of the native protocols and to other
successfull alignment methods (i.e. T-COFFEE and
CLUSTAL W).

Bioinformatics 19(Suppl. 2) c© Oxford University Press 2003; all rights reserved. ii189

praktikum2-ub
Rechteck

praktikum2-ub
Rechteck

praktikum2-ub
Rechteck



M.Sammeth et al.

2 TECHNICAL BACKGROUND
A global alignment of a family of k sequences S =
(s1, s2, . . . , sk) over a finite alphabet � can be defined as
a k × m matrix A with entries in an extended alphabet
�∗ = � ∪ {−}, such that ignoring the blank characters,
the pth row reproduces sequence sp and there is no
column consisting exclusively of blanks. A maximal run
of adjacent blank characters in a row is called a gap.
Further, an alignment A can be represented as a source-
to-sink path in a k-dimensional alignment graph.

In contrast, a local alignment aligns only substrings of
the input sequences. Most frequently, local alignments
are used in pairwise sequence comparison (k = 2),
especially for database searching. A special type of local
alignments is the gap-free pairwise alignment, by which
two substrings of equal length are matched. Note that
these substrings are usually expected to share a certain
degree of similarity but, in general, they are not required
to be identical. Ungapped local alignments between two
sequences are sometimes called fragments or diagonals.
Moreover, such gap-free pairwise alignments are also used
in the context of multiple sequence comparison. Here,
a fragment f is uniquely determined by the involved
sequences sp and sq , the starting points i and j of the
substrings and the fragment length �. Therefore, we will
use the shorthand notation f = ([p, i], [q, j], �).

Before we will introduce our new fragment-based
divide-and-conquer global alignment algorithm, we
outline both of the strategies involved, multiple align-
ment construction based on pairwise fragments and the
divide-and-conquer algorithm for simultaneous multiple
alignment.

2.1 Segment-based multiple alignment
In the segment-based program DIALIGN, a weighting
function is defined on the set of all possible fragments,
and the program tries to find a consistent collection
of fragments with maximum total weight Morgenstern
(1999). A set F of fragments is called consistent if there
exists a global alignment AF such that all segment pairs
f ∈ F are aligned by AF ; in this case, we say that AF
realizes F . A non-consistent set of fragments is shown in
Figure 1.

For multiple alignment, DIALIGN integrates fragments
greedily into a consistent set F that defines an alignment
of the input sequences. To check if a fragment f can be
included into F , the algorithm uses so-called transitivity
frontiers, a data structure first introduced by Abdeddaïm
Abdeddaı̈m (1997). Let us consider the set X of all
positions x in a sequence family S = (s1, s2, . . . , sk)

where position x = [p, i] corresponds to the i th character
in sequence sp. A collection F of fragments induces
a quasi-partial order relation �F on the set X where
x �F y means that x is to the left-hand side or in the

same column as y in every alignment AF that realizes F .
Formally, the transitivity frontiers are defined as

PredF (x, p) = max{ j : [p, j] �F x},
SuccF (x, p) = min{ j : x �F [p, j]}.

In other words, PredF (x, p) (SuccF (x, p)) is the in-
dex of the right-most (left-most) character in sequence sp
that is to the left (right) of x with respect to the relation
�F . These frontiers can be used to decide which residues
of the sequences are still alignable without leading to in-
consistencies with F Abdeddaı̈m and Morgenstern (2001),
see Figure 2. If the referred set of fragments is obvious, we
will drop the index F in PredF (x, p) and SuccF (x, p).

2.2 Divide-and-conquer hyperspace alignment
For a given family of input sequences S = (s1, s2, . . . , sk),
the divide-and-conquer approach to simultaneous multi-
ple sequence alignment (DCA) Tönges et al. (1996) firstly
splits each sequence sp ∈ S at a cut position cp. In or-
der to obtain good cut positions, Tönges et al. Tönges et
al. (1996) suggest to use pairwise matrices C p,q for all
sp, sq ∈ S that store for each cell (i, j) of the dynamic-
programming matrix the additional alignment costs that
are incurred if the alignment graph is forced to leave the
optimum and pass the cell (i, j). These matrices are cal-
culated using standard dynamic programming procedures.
Different heuristics have been described to find families
of cut positions (c1, c2, . . . , ck) that minimise the addi-
tional costs in all sequence pairs Stoye (1998). The cut-
ting procedure is recurred until a certain stop size of the
cut sequences is no longer exceeded. Then, the obtained
atomic subsequences are aligned optimally and the results
are concatenated to form a complete global alignment A.

Within the DCA protocol, the optimal alignment of
the atomic sets of subsequences is achieved by applying
the simultaneous alignment strategy as described for
the MSA algorithm Gupta (1995). The latter applies
a simultaneous alignment algorithm which basically
conquers a k-dimensional (hyperspace) lattice using the
forward dynamic programming technique concurrently on
all sequences in S to find an optimal multiple alignment
according to the scoring function. However, heuristics are
used to reduce the search effort, e.g. the Carrillo-Lipman
heuristics Carrillo and Lipman (1988): a progressive
alignment is pre-computed for the input set to derive
an upper bound on the alignment costs in all projected
sequence pairs. Afterwards, pairwise matrices of total
alignment costs Dp,q , which are again calculated by
dynamic programming procedures, are applied to exclude
projections of hyperspace cells from the optimal solution.
The final dynamic programming procedure conquering
the hyperspace lattice then is sped up by a branch-and-
bound procedure skipping all cells which contain an
excluded pairwise projection.

ii190



Divide-and-conquer multiple alignment with segment-based constraints

7

7

7

8

8

8

9

9

9

10

10

10

11

11

11

12

12

12

13

13

13

14

14

14

15

15

15

16

16

161

1

1

2

2

2

3

3

3

4

4

4

5

5

5 6

6

6 17

17 18

18

s2

s3

s1

Fig. 1. A set of fragments f1, . . . , fN may be inconsistent, i.e., it may not be possible to include all fragments simultaneously in a single
multiple alignment. In our example, the three fragments f1 = ([1, 5], [2, 3], 5), f2 = ([2, 6], [3, 11], 4) and f3 = ([1, 10], [3, 10], 3), shown
as lines between the aligned indices, would lead to contradicting alignment of the positions marked in grey in a global multiple alignment.

7

7

7

8

8

8 9

9

9

10

10

10 11

11

11

12

12

12

13

13

13

14

14

14 15

15

15

16

16

16

1

1

1 2

2

2

3

3

3

4

4

4

5

5

5

6

6

6 17

17

18

18

s2

s3

s1

f1

f2 f3

Fig. 2. Example for transitivity frontiers of position [1,9] (marked grey) enforced by the set of fragments F = { f1, f2, f3} with
f1 = ([1, 6], [2, 4], 6), f2 = ([2, 3], [3, 3], 4), f3 = ([1, 13], [3, 13], 5). For s3, Pred([1, 9], 3) = 6 and Succ([1, 9], 3) = 13 are
induced. In the special case of aligned positions, transitivity frontiers coincide, for example in s2, a single position is specified by
Pred([1, 9], 2) = Succ([1, 9], 2) = 7.

3 THE ALGORITHM
On a high level, our algorithm proceeds as follows: in a
first step, we apply the segment-based alignment in order
to obtain a consistent set F of fragments representing a
framework for further refinement. These fragments—or
a suitable subset of them—are used as constraints in the
second step of the algorithm. Here, we apply the divide-
and-conquer method to complete the alignment for those
regions that are not aligned by the fragments in F . More
precisely, divide-and-conquer computes a (near-)optimal
multiple alignment A under the additional constraint that
A realises the set F . To control the influence of the
fragments in F on the final alignment, we apply a cutoff
threshold T and accept only those fragments f ∈ F that
have overlap weights exceeding T (see Morgenstern et
al. (1996) for a definition of these overlap weights). With
T = 0, the entire set F is used as constraints, and the
final alignment is therefore just a minor modification of
the DIALIGN alignment. With higher cutoff values, the
influence of the segments is reduced, and the resulting
output alignments are more similar to what the original
divide-and-conquer algorithm would return. If T is large
enough to exclude all fragments f ∈ F , we obtain exactly
the DCA alignment.

While the computation of the fragments can be per-
formed exactly as in the DIALIGN algorithm (or any other

procedure that computes consistent local similarities from
a family of sequences), three modifications to the divide-
and-conquer algorithm are necessary: (1) in the divide
step, the cut positions selected to divide the sequences
need to be in accordance with our fragment-induced
constraints; and in each conquer step, (2a) the heuristic
multiple alignment used to calculate the Carrillo-Lipman
bounds and (2b) the simultaneous multiple alignment
procedure carried out to compute an alignment AF within
these bounds must respect the constraints given by F .
These modifications are detailed in the following two
subsections.

3.1 The divide step with constraints
Our first modification to the original DCA algorithm
concerns the way we compute the additional-cost matrices
that are used to determine cut positions for the sub-
alignments. The consistency constraints prevent certain
pairs of residues from being aligned to each other. The
corresponding graphs in the alignment matrices must
therefore be masked. To this end, we simply assign
infinite additional costs to those edges. Given a sequence
pair (sp, sq), we need to know those positions j in sq
that are alignable with position [p, i] without leading to
inconsistencies; this information must be available for
each position [p, i] in sequence sp and vice versa for each
position [q, j] in sequence sq .

ii191



M.Sammeth et al.

There are two possible scenarios (cf. Figs 2 and 3): the
first scenario is that position [p, i] is already (directly
or indirectly) aligned with some position [q, j] by the
fragments in F . This is the case if and only if we
have Pred([p, i], q) = Succ([p, i], q) = j . In this
case, there is only one possible edge in the respective
pairwise alignment matrix leading to cell (i, j), namely
the diagonal edge coming from position (i − 1, j − 1),
see Figure 3, left. The two edges coming from (i − 1, j)
and (i, j − 1) have to be excluded—together with all
edges to the left and above this edge, as they would
correspond to a gap character aligned to position [p, i],
in contradiction to the given fragments that impose that
[p, i] is aligned with [q, j]. The second scenario is
that [p, i] and [q, j] are not (yet) aligned, which is the
case if and only if Pred([p, i], q) < Succ([p, i], q)

holds (Fig. 3, center). In this case, all positions between
Pred([p, i], q) + 1 and Succ([p, i], q) − 1 can be
aligned with [p, i] without leading to inconsistencies.
For Pred([p, i], q) + 1 ≤ j ≤ Succ([p, i], q) − 1
(Fig. 3, right), the cell (i, j) in the dynamic programming
matrix can be reached from all three possible positions.
In addition, cell (i, Pred([p, i], q)) can be reached from
above (but not from the left or from the top-left) and cell
(i, Succ([p, i], q)) can be reached from the left (but not
from above or from the top-left), see Figure 3, center and
right. After this masking procedure, the original procedure
used in DCA can be employed to identify suitable cut
positions for the divide step.

3.2 The conquer step with constraints
In the Carrillo-Lipman approach, all optimal pairwise
alignments as well as a heuristic multiple alignment of
the input sequences are computed in order to determine
boundaries for the pairwise projections of an optimal
multiple alignment to the respective pairwise comparison
matrices Carrillo and Lipman (1988). In our constrained
scenario, we need to impose the consistency constraints
both to the optimal pairwise alignments and to the
heuristic multiple alignment. The pairwise alignments are
calculated as explained in Section 3.1. For the heuristic
multiple alignment, where we use a progressive approach
with profile alignments described in Gupta (1995), in
addition to alignments of individual sequences, a very
similar consistency-constrained approach can be applied,
too. To determine which positions are alignable between
two profiles, the transitivity frontiers of all involved
sequence pairs are considered. The alignable regions for
the profiles are then given as the intersections of the
alignable regions for the individual sequence pairs.

Once the pairwise alignments and the heuristic multiple
alignment are computed, restrictions for the projections
of an optimal multiple alignment to all pairwise com-
parison matrices can be calculated. In our approach, we

have additional constraints derived from our transitivity
frontiers. The regions allowed for the projections to the
pairwise matrices are simply given as the intersections
between the regions calculated using the Carrillo-Lipman
boundaries and the regions defined by our transitivity
frontiers. An optimal multiple alignment realising F is
finally computed in the space that is defined by these
combined pairwise restrictions, similar to the original
Carrillo-Lipman approach.

4 RESULTS AND DISCUSSION
To evaluate the performance of our new algorithm, we
benchmarked it against DIALIGN, DCA, CLUSTAL W
and T-COFFEE. For DCA, we used a re-implementation
that employs a more stable version of MSA. For all pro-
grams, we used their default parameter settings together
with the BLOSUM-62 substitution matrix. Our algorithm
was implemented in JAVA and the program was tested
with a hotspot capable runtime environment (JDK1.4.1
with a maximum of 3 GB heap memory). The main
benchmarks were performed on a SUN workstation (SUN
Fire 880, 750 MHz, 32 GB main memory). Data for
benchmarking was derived from the reference alignments
in BAliBASE, version 1 Thompson et al. (1999), where
reference alignments are sorted into five groups according
to the characteristics of the input, respectively. Within
the first three groups, the sequences of the input share
a variant degree of global affinity, but similarity drops
from group 1 to group 3. Group 4 contains alignments
with N/C-terminal extensions, while in group 5 sequences
with internal insertions have been collected. To compare
the computed alignments to the BAliBASE benchmark
alignments, we used the program aln compare written
by C. Notredame (personal communication).

Table 1 summarizes the main results. For each group
of alignments from the BAliBASE data set, the average
percentage identity with the reference alignments is given,
taking into account structural columns as annotated in
BAliBASE. A basic version of our program denoted by
Mixed T = 0 in Table 1 uses the entire set of fragments
returned by DIALIGN as constraints for the divide-and-
conquer alignment. In addition, we performed runs where
the cutoff value T was set to higher values, such that only
fragments with overlap weights above T were used. For
comparison, we also ran two popular multiple alignment
programs from the literature, CLUSTAL W Thompson et
al. (1994) and T-COFFEE Notredame et al. (2000).

As can be seen from Table 1, the strengths of DCA
and DIALIGN differ substantially. The mixed approach
shows characteristics of both strategies, refining the
segment-based local alignment computed by DIALIGN
with the divide-and-conquer hyperspace alignment strag-
egy (DCA). Problems arise in group 2 and group 3 where
neither DIALIGN can provide good local similarities,

ii192



Divide-and-conquer multiple alignment with segment-based constraints

2

4

3

1

1 42 3 5 1 42 3 5

2

4

3

1

1 42 3 5

2

4

3

1

i

sp

sq

Pred(i) = Succ(i) Pred(i) Succ(i)
sq

i

sp

Succ(i)

i

sp

sq

Pred(i)

ε εε

ε ε ε

Fig. 3. Three examples of transitivity frontiers for i = 2 in a two dimensional dynamic programming matrix of sp and sq . Black dots
represent cells within the matrix of which incoming edges are affected by the transitivity frontiers considered here.

Table 1. Percent identity of the results produced by the various algorithms with the reference alignments given by BAliBASE (according to the column score
of trusted regions). The alignment count is given in parentheses after each group in the top row

Algorithm Group 1 (83) Group 2 (23) Group 3 (12) Group 4 (13) Group 5 (11)

DCA 79.27 29.47 37.47 58.81 78.93
Mixed T = 10 76.03 26.06 35.71 71.52 72.45
Mixed T = 7 76.11 24.66 33.84 73.74 80.54
Mixed T = 5 76.26 25.49 34.04 74.82 85.08
Mixed T = 3 74.39 24.86 35.73 78.93 83.74
Mixed T = 0 73.07 25.39 35.49 75.29 80.38
DIALIGN 71.95 25.13 35.10 74.66 80.38
CLUSTAL W 79.53 32.91 48.72 74.02 67.84
T-COFFEE 76.86 36.89 49.94 81.28 86.25

nor does the scoring function maximized by DCA yield
results close to the reference alignments. However, in
group 1 and in the last two groups, the best scoring result
of the mixed strategy is very close to the T-COFFEE
results. Note that the values given are arithmetic averages
over all alignments in a group such that single alignments
within a group can score even better than with T-COFFEE.
Because of the global affinity within group 1, the global
strategies perform very good there (see CLUSTAL W,
DCA). In contrast, exclusively global methods perform
rather poorly in group 4 and group 5, whereas the mixed
strategy can successfully integrate the local fragments
into the global alignment (i.e. it scores better than any of
the underlying strategies alone).

Concerning the influence of the cutoff parameter on
the quality of the resulting alignment, it can be seen
from Table 1 that the best value for T depends on the
characteristics of the input data. In the first three groups
of BAliBASE where DCA is superior to DIALIGN, a high
cutoff prevents spurious fragments from deteriorating the
final alignment and increases the quality of the program
output. For groups 4 and 5, however, DIALIGN fragments
tend to improve the alignment produced by DCA. Here, a

lower cutoff leads to better results.
Table 2 reports on the running time for the programs

we analyzed. Alignments that did not terminate within
24 hours were considered as failures. The reason for this
phenomenon is that, even with efficient heuristics, the
search for high-quality cut positions and the subsequent
hyperspace alignment may be time-consuming for large or
badly matching sequence families. Our results show that if
input sequences are easy to align, the mixed protocol takes
slightly more time than the two underlying algorithms
together. This is because additional CPU time is necessary
to mask all matrices used in DCA according to the set of
fragments found by DIALIGN. However, the time spent
for this purpose quickly pays off for input sequences that
are difficult to align such as in groups 2–5. Here all mixed
results show less failures and are aligned faster than with
the original DCA algorithm. Fragments can, of course,
slow down the search for optimal cut points if they are
not in agreement with the global optimal alignment (see
failure counts in Table 2, Mixed T = 10). In general,
however, the fragments from the local alignment reduce
the part of the hyperspace that needs to be considered
by DCA, thereby speeding up the divide-and-conquer

ii193



M.Sammeth et al.

Table 2. Time consumption in seconds and number of failed runs (in parentheses) for the various programs summed up for each BAliBASE group. The total
number of alignments in each group is given in parentheses in the top row

Algorithm Group 1 (83) Group 2 (23) Group 3 (12) Group 4 (13) Group 5 (11)

DCA 136.33 (0) 119430.51 (1) 307753.98 (5) 9918.90 (2) 42252.48 (2)
Mixed T = 10 766.02 (0) 8942.64 (1) 1909.89 (1) 4427.80 (1) 42411.52 (1)
Mixed T = 7 680.62 (0) 8634.20 (0) 1475.39 (2) 1969.15 (1) 42175.50 (1)
Mixed T = 5 445.24 (0) 3435.06 (0) 1360.25 (2) 459.20 (1) 42051.03 (0)
Mixed T = 3 487.88 (0) 3014.28 (0) 1360.90 (2) 324.16 (1) 17202.66 (0)
Mixed T = 0 435.00 (0) 1652.18 (0) 1279.20 (0) 289.98 (0) 276.57 (0)
DIALIGN 136.67 (0) 525.97 (0) 386.45 (0) 141.51 (0) 94.49 (0)
CLUSTAL W 140.19 (0) 445.47 (0) 136.28 (0) 71.25 (0) 50.67 (0)
T-COFFEE 447.68 (0) 4614.28 (0) 2485.24 (0) 913.01 (0) 550.33 (0)

Table 3. Column scores and running time (in parentheses) for different algorithm runs in group 5 of the BAliBASE

data set Mixed T = 5 Mixed T = 3 Mixed T = 0 T-COFFEE

1eft 71.4 (5.03) 71.4 (5.30) 71.4 (5.66) 71.4 (15.94)
1ivy 94.7 (21.19) 92.8 (21.39) 77.8 (20.85) 75.6 (20.40)
1qpg 100.0 (73.35) 100.0 (74.60) 100.0 (73.82) 100.0 (131.08)
1thm1 66.7 (19.83) 66.7 (18.43) 55.6 (10.83) 83.3 (37.49)
1thm2 76.7 (4.01) 76.7 (3.71) 88.3 (4.03) 88.3 (12.85)
2cba 100.0 (11.23) 100.0 (9.35) 100.0 (9.22) 96.7 (17.52)
kinase1 93.5 (4.87) 80.6 (4.52) 80.6 (5.83) 91.0 (78.98)
kinase2 66.7 (76.55) 66.7 (79.93) 66.7 (31.64) 100.0 (5.37)
kinase3 81.2 (83.93) 81.2 (94.08) 81.2 (77.56) 80.6 (6.23)
S51 85.0 (41744.78) 85.0 (16884.04) 62.6 (32.90) 88.9 (62.90)
S52 100.0 (6.28) 100.0 (7.32) 100.0 (4.24) 72.9 (161.57)

approach and causing fewer fails. Obviously, this time
gain is reduced if more of the fragments are filtered out.
Nevertheless, in most instances the mixed strategy is still
faster than T-COFFEE which needs additional CPU time
to preprocess and bias local information of the input
and therefore takes about ten times the running time of
CLUSTAL W. To our knowledge this is the first time that a
simultaneous alignment strategy is about as time efficient
as progressive heuristics. Moreover, note that the mixed
strategy is implemented in JAVA as opposed to CLUSTAL
W and T-COFFEE that are written in C, such that there
is probably an even bigger algorithmic time gain than
reflected by the time measurements shown in Table 2.

Finally, Table 3 gives an overview of the quality and
running time for all 11 individual alignments of BAli-
BASE group 5. In the specific alignment runs, a general
trend of quality and time gain for different cutoff values
is hard to observe. However, in a few cases the time effort
is sensitively triggered by T (e.g. the running time for S51
runs can be reduced from 11.6 to 4.7 hours by increasing
the number of fragments from T = 5 to T = 3 while
the score remains the same). Although both protocols
inherit from global and local alignment methods, results

show that the strengths of mixed DIALIGN–DCA strategy
differ from the ones of T-COFFEE (e.g. the kinase2 set is
aligned correctly by T-COFFEE while the mixed protocol
just reaches 2/3 identity with the reference, whereas for
the S52 set the situation is the reverse). Thus, carefully
chosen fragments are essential in combining local and
global alignment strategies.

As could be demonstrated by the BAliBASE benchmark
results, the mixed alignment strategy successively com-
bines the strengths of DIALIGN (local) and DCA (global)
multiple alignment. On the one side, the mixed method
takes full advantage of the hyperspace alignment, while it
reduces the computational time (and space) requirements
necessary for this method (see Table 2). In most reference
groups, the average results can reach a value close to the
T-COFFEE algorithm (see Table 1), and they are generally
faster calculated. Single alignments within a group of the
BAliBASE reference set are even outperforming results of
the T-COFFEE algorithm (see Table 3).

Furthermore, different values empirically tested for the
cutoff T of fragment scores were found to show peaks
in alignment quality for each group in the BAliBASE

ii194



Divide-and-conquer multiple alignment with segment-based constraints

reference. Hence, in further work we will concentrate on
replacing the naive threshold-based fragment filter by a
weighting scheme that biases the score of each fragment
during the global alignment construction. Our hope is
that we can achieve a simultaneous dynamic programming
algorithm that considers the extended information of local
fragments but is not misled if the similarities found turn
out to be incorrect for a global solution.

ACKNOWLEDGEMENTS
We would like to thank Cedric Notredame for providing a
reliable program for the comparison of test alignments to
the BAliBASE reference alignments.

REFERENCES
Abdeddaı̈m,S. (1997) Incremental computation of transitive closure

and greedy alignment. Proceedings of 8th Annual Symposium
on Combinatorial Pattern Matching (CPM 1997), volume 1264
of LNCS, pp. 167–179.

Abdeddaı̈m,S. and Morgenstern,B. (2001) Speeding up the DI-
ALIGN multiple alignment program by using the ‘greedy align-
ment of biological sequences library’ (GABIOS-LIB). Proceed-
ings Journées Ouvertes: Biologie, Informatique, Mathématiques
(JOBIM 2000), volume 2066 of LNCS, pp. 1–11.

Carrillo,H. and Lipman,D. (1988) The multiple sequence alignment
problem in biology. SIAM J. Applied Math., 48, 1073–1082.

Depiereux,E., Baudoux,G., Briffeuil,P., Reginster,I., Boll,X.D.,
Vinals,C. and Feytmans,E. (1997) Match-Box server: a mul-
tiple sequence alignment tool placing emphasis on reliability.
CABIOS, 13, 249–256.

Feng,D.F. and Doolittle,R.F. (1987) Progressive sequence alignment
as a prerequisite to correct phylogenetic trees. J. Mol. Evol., 25,
351–360.

Gupta,S., Kececioglu,J. and Schäffer,A. (1995) Improving the
practical space and time efficiency of the shortest-paths approach
to sum-of-pairs multiple sequence alignment. J. Comp. Biol., 2,
459–472.

Higgins,D. and Sharp,P. (1988) CLUSTAL—a package for perform-
ing multiple sequence alignment on a microcomputer. Gene, 73,
237–244.

Kececioglu,J. (1993) The maximum weight trace problem in
multiple sequence alignment. Proceedings of the 4th Annual
Symposium on Combinatorial Pattern Matching (CPM 1993),
volume 684 of LNCS, pp. 106–119.

Lassmann,T. and Sonnhammer,E. (2002) Quality assessment of
multiple alignment programs. FEBS Lett., 529, 126–130.

Morgenstern,B. (1999) DIALIGN 2: improvement of the segment-
to-segment approach to multiple sequence alignment. Bioinfor-
matics, 15, 211–218.

Morgenstern,B., Dress,A. and Werner,T. (1996) Multiple DNA
and protein sequence alignment based on segment-to-segment
comparison. Proc. Natl Acad. Sci. USA, 93, 12098–12103.

Myers,G., Selznick,S., Zhang,Z. and Miller,W. (1996) Progressive
multiple alignment with constraints. J. Comp. Biol., 3, 563–572.

Notredame,C. (2002) Recent progress in multiple sequence align-
ment: a survey. Pharmacogenomics, 3, 131–144.

Notredame,C., Higgins,D. and Heringa,J. (2000) T-COFFEE: a
novel method for fast and accurate multiple sequence alignment.
J. Mol. Biol., 302, 205–217.

Schuler,G.D., Altschul,S.F. and Lipman,D.J. (1991) A workbench
for multiple alignment construction and analysis. Proteins:
Struct. Funct. Genet., 9, 180–190.

Stoye,J. (1998) Multiple sequence alignment with the divide-and-
conquer method. Gene, 211, GC45–GC56.

Taylor,W.R. (1988) A flexible method to align large numbers of
biological sequences. J. Mol. Evol., 28, 161–169.

Thompson,J., Higgins,D. and Gibson,T. (1994) CLUSTAL W: im-
proving the sensitivity of progressive multiple sequence align-
ment through sequence weighting, position-specific gap penalties
and weight matrix choice. Nucleic Acids Res., 22, 4673–4680.

Thompson,J., Plewniak,F. and Poch,O. (1999) BAliBASE: a bench-
mark alignment database for the evaluation of multiple alignment
programs. Bioinformatics, 15, 87–88.

Thompson,J., Plewniak,F. and Poch,O. (1999) A comprehensive
comparison of multiple sequence alignment programs. Nucleic
Acids Res., 27, 2682–2690.

Tönges,U., Perrey,S., Stoye,J. and Dress,A. (1996) A general
method for fast multiple sequence alignment. Gene, 172, GC33–
GC41.

Vingron,M. and Argos,P. (1991) Motif recognition and alignment
for many sequences by comparison of dot-matrices. J. Mol. Biol.,
218, 33–43.

ii195


