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Abstract

A high-speed panoramic visual stimulation device is introduced which is suitable to analyse visual interneurons during stimu-

lation with rapid image displacements as experienced by fast moving animals. The responses of an identified motion sensitive neuron

in the visual system of the blowfly to behaviourally generated image sequences are very complex and hard to predict from the

established input circuitry of the neuron. This finding suggests that the computational significance of visual interneurons can only be

assessed if they are characterised not only by conventional stimuli as are often used for systems analysis, but also by behaviourally

relevant input.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The representation of visual information in nervous

systems is usually analysed with stimuli that are much
simpler than the stimuli experienced by an animal under

natural conditions. The differences in the stimuli pertain

to both their structural properties which are mainly set

by the properties of the outside world as well as to their

dynamics which are, at least in actively moving animals,

determined to a large extent by the animal�s own actions
and reactions. In most cases, it is hardly possible to

record from visual interneurons in the behaving animal.
Exceptions are studies on Limulus, where nerve cell re-

cordings were made in almost freely moving animals

(Passaglia, Dodge, Herzog, Jackson, & Barlow, 1997),

and on monkeys, where the responses of cortical neu-

rons were monitored while the animal looked around in

its environment (Vinje & Gallant, 2000, 2002). The

problems with electrophysiological recordings in freely

moving animals increase in fast moving, and in partic-

ular, in flying ones. A free-flight situation was mimicked

by oscillating a fly with an electrode inserted into its
brain with dynamics that approximated the rota-

tional self-motion component experienced in free flight

(Lewen, Bialek, & de Ruyter van Steveninck, 2001). The

latter approach, though technically very demanding,

does not take into account the translational component

of optic flow generated by self-motion. This limitation

does not exist for another recent approach to simulate

free-flight situations (Gray, Pawlowski, & Willis, 2002).
Behavioural activity was monitored together with mul-

tineuronal CNS activity in flying moths tethered in a

novel flight simulator that combines realistic, interactive

visual environments with mechanosensory and olfactory

stimuli. Initial experiments reveal that this system is

potentially very useful to examine activity from groups

of neurons during realistic closed-loop behaviour. Al-

though, with a frame rate of only 60 frames/s, the
flight simulator is likely to be too slow for fast flying

insects, it appears to be fully appropriate for experi-

ments on moths for which it was developed. To cir-

cumvent most of the limitations of previous studies

more indirect approaches have recently been employed
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to stimulate animals with naturalistic image sequences in

electrophysiological experiments. In contrast to audi-

tory research where it is comparatively straightforward

to use complex natural stimuli for experimental analysis,

using naturalistic stimuli in vision research was mainly

hampered by technical difficulties to generate and pre-

sent spatio-temporally complex stimuli. Only recently,

some of these obstacles could be surmounted and it has
been possible to analyse visual information processing

with visual stimuli that approximate to some extent the

natural input an animal receives during active locomo-

tion. In several studies image sequences have been pre-

sented to the animal in electrophysiological experiments

that might have been seen by a behaving animal while

moving on artificial tracks of locomotion that were de-

signed by the experimenter (Kern, Lutterklas, & Egel-
haaf, 2000; Pekel, Lappe, Bremmer, Thiele, &

Hoffmann, 1996; Sherk & Fowler, 2001).

This �replay approach� has recently been extended

and the retinal image displacements as experienced by

moving flies were replayed to fixed animals during nerve

cell recordings (Kern, Lutterklas, Petereit, Lindemann,

& Egelhaaf, 2001a, 2001b). This approach suffered so

far from the limitation that the behaviourally generated
image sequences were replayed with a specially designed

video player at a frame rate of 100 Hz on conventional

monitor screens. Although this frame rate is much

higher than that of conventional video players, it is too

slow if rapid image displacements are to be replayed.

Such rapid image displacements are elicited, for in-

stance, during rapid flight manoeuvres or during eye,

head or body saccades. Therefore, this technique has
been applied so far only to walking animals.

Fast moving animals and, in particular, rapidly flying

insects or birds pose several challenges to the generation

of behaviourally generated visual stimuli. (i) The retinal

images may be displaced so rapidly that temporal ali-

asing may emerge, if the stimuli are presented on a

monitor screen and if the frame rate is not sufficiently

high. (ii) The temporal resolution, in particular, of insect
eyes is frequently much higher than the temporal reso-

lution of, for instance, human eyes. As a consequence,

the stimulus device is required to present image se-

quences at a very high frame rate to prevent the neu-

ronal responses from time-locking to the individual

frames. (iii) Insects and most birds, but also many

mammals have almost panoramic visual fields. More-

over, visual interneurons have been found in a variety of
animal groups that integrate global information from

large parts of the visual field, for instance, in the context

of optic flow processing. In addition, synaptic interac-

tions between cells enlarge the classical receptive field of

cells even to the contralateral side of the visual field.

Conventional stimulus monitors, thus, cover at best a

small part of a cell�s receptive field (reviews: insects:
Egelhaaf, Kern, Krapp, Kretzberg, & Warzecha, 2002;

Hausen & Egelhaaf, 1989; birds: Frost & Wylie, 2000;

rabbits: Simpson, 1984).

To meet these challenges and to analyse the neuronal

processing of natural stimuli generated by rapidly

moving animals we developed a panoramic visual

stimulator, called FliMax. FliMax solves a principal

problem of visual stimulation with cathode ray tube

(CRT) displays. These displays generate an image on a
surface of fluorescent pigments by repeatedly activating

the fluorescence with an electron beam. To allow for fast

image changes, the fluorescence must dim out within the

interframe interval. As a consequence, the image on a

CRT is flashing at the frame rate even if a constant

image is shown. In contrast, a constant image on Fli-

Max does not show any measurable changes in bright-

ness over time.
With an update rate of image frames of 370 Hz Fli-

Max is sufficiently fast even for adequately stimulating

the eyes of fast flying insects. The present account in-

troduces this novel stimulus device and provides first

electrophysiological results on motion-sensitive neurons

stimulated with optic flow generated during rapid flight.

The experiments were done on the blowfly, because it

served during the last decades as a prominent model
system for analysing the neuronal mechanisms under-

lying visual motion processing (Borst & Haag, 2002;

Egelhaaf et al., 2002; Egelhaaf & Warzecha, 1999;

Hausen & Egelhaaf, 1989). Hence, the fly represents a

model animal, where there is sufficient knowledge

available on the performance of its visual system which,

thus, may serve as reference for an understanding of the

processing of complex natural optic flow.

2. Methods

2.1. Design principles of FliMax

A VGA card outputs the image information repeat-

edly at a fixed frame rate. In CRT displays this infor-

mation is used to visibly refresh the fluorescent image

on the screen. In FliMax the refresh of information

is invisibly done in the electronics (see below) and we

refer to this as update of the image. If the image infor-
mation changes between adjacent frames, we call this

exchange.

FliMax is designed as a special purpose VGA output

device. A standard VGA graphics card is programmed

by specific driver code to generate frames at the high

temporal resolution of 370 Hz. The VGA signal is in-

terpreted by FliMax as an update of the luminance of

individual light emitting diodes (LEDs). The luminance
of each LED is kept constant between updates by

sample-and-hold circuits. These circuits eliminate the

flashing characteristic of standard CRT displays.
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2.1.1. Geometric design

An ideal stimulator should present the images on a

spherical surface with image elements located at equi-

distant positions to the animal situated in the centre of

the sphere. However, the most convenient layout for

electronic circuits are flat printed circuit boards (PCBs).

FliMax approximates a sphere by its icosahedric design

(radius of inscribed sphere 0.224 m) (Fig. 1). It consists
of 14 of the 20 triangles of an icosahedron each of which

forms a PCB. FliMax is open at its rear to mount an

animal in the centre of the icosahedron and to make

recordings from its brain. For electronics purposes the

14 triangular PCBs are combined to seven rhomboids.

Each rhomboid holds 1024 equidistantly mounted

LEDs (WU-2-53GD, Vossloh Wustlich Opto, Ger-

many) arranged in 32 rows by 32 columns, facing the
inner side of FliMax. The diameter of the round LEDs is

5 mm, the emitting wavelength is 567 nm, the angle of

emittance as specified by the vendor is 60�. However,
measurements on individual LEDs indicate only 25�
(full width at half maximum) emittance angle. The

spatial angular separation of LEDs in the centre of a

triangle as seen from the centre of FliMax is about 2.3�.
Towards the edges of the board the angular separation

between LEDs decreases to minimally 1.5�.

2.1.2. Electronics of FliMax timing

The VGA graphics card (Diamond Stealth S540 PCI)

generates five signals that are interpreted by the FliMax

electronics (Fig. 2). The vertical sync pulse marks the

beginning of an update cycle, the horizontal sync pulse

controls a row switch and the analog ‘‘blue’’ colour

signal acts as a pixel clock. The device operates at 370

updates per second. The 14 triangles are updated in a

fixed, but pseudo-random order. The update direction of

the rows is different for each rhomboid. Therefore, no

global apparent movement is generated during an up-
date. The analog ‘‘green’’ and ‘‘red’’ colour signals

jointly encode the luminances of a pair of LEDs at each

tick of the pixel clock. The maximum luminance aver-

aged over the array of LEDs was 420 cd/m2.

Programmable logic circuits (Gate Array Logic,

GAL) are employed to generate LED addresses from

the sync pulses and the blue colour signal. The GAL

chips ‘‘enable’’ the seven rhomboids sequentially (one by
one) and generate row (1 . . . 32) and column (1 . . . 16)
addresses used by four subsequent analog demultiplex-

ers. The column demultiplexers assign the ‘‘red’’ and

‘‘green’’ signal to individual neighbouring columns of

LEDs. The column demultiplexing is done by CMOS

chips (16:1 analog mux/demux CD 4067). The row se-

lection is done by demultiplexers that drive individual

CMOS switches (Maxim MAX4501EUK-T) associated
to each LED (for details see Fig. 2). To avoid acceptance

errors of the red and green analog signals, respectively,

the clock signal is transformed into a strobe signal by an

appropriate circuit.

Each LED is driven by a small sample-and-hold cir-

cuit, that ensures that the voltage at the LED is kept

constant between exchanges. During the updates of an

LED, the capacitor of the circuit is charged to the
voltage of the VGA signal. The capacitor�s voltage acts
as the input to a current amplifier (DMOS BS870,

General Semiconductor) driving the LED.

2.1.3. Replay-software

Based on standard VGA mode 13h (320� 200 pixels,
1 Byte¼ 256 palettised colours) the graphics card is re-
programmed to run at 370 Hz frame rate with the frame

size set to 128� 228 pixels. For each of the 3584 pairs of
LEDs updated synchronously we use 8 successive Bytes

in video memory rather than 2 Bytes. This measure re-

duces the effective pixelclock from 14 MHz to 3.5 MHz,

extending the time available to charge the sample-and-

hold capacitors. In addition, strobing is used to avoid
acceptance errors (see above). Each Byte in the video

memory is divided by the software into four domains.

One bit codes for the ‘‘blue’’ clock signal, three bits

Fig. 1. (A) Photograph of FliMax from behind. In the foreground the

micromanipulators can be seen by which recording electrodes are in-

serted into the fly�s brain. (B) Mercator plot of the regions of the visual
field that are stimulated (indicated in grey). The white lines between the

grey areas indicate the edges of the triangular printed circuit boards.

Note that the distortions are a consequence of the Mercator projec-

tion.
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encode the luminance of the LED assigned to the green

colour signal, another three bits encode the luminance of

the LED assigned to the red colour signal. The re-
maining bit is not used. Eight out of 64 values from the

palette are used. They have been chosen to correct for

the non-linear voltage vs. brightness characteristics of

the LEDs. Hence, about equally sized changes in

brightness for each count in the (colour signal) intensity

value are obtained.

After the VGA adaptor is initialised to the appro-

priate resolution and frame rate, the replay can be done
by just updating the video memory for each vertical sync

period. The video memory is updated incrementally

under software control according to frame differences

stored in an flic file (animation file format; Kent, 1993).

A signal on the printer port is set during video memory

updates, sampled at a rate of 4 kHz (I/O-card DT3001,

Data Translation) and stored for further reference with

respect to timing.

2.1.4. Determination of trajectories

2.1.4.1. Walk trajectories. Flies walking in an arena
(diameter: 0.5 m, height: 0.3 m) were video-recorded (50

Hz). The walls of the arena were covered with random

textures while the floor was homogeneously white.

Textured objects were introduced into the arena. The

video sequences were digitised. The position of the head

and the orientation of the flies were automatically de-
termined in each frame by specifically designed software

(further details see (Kern et al., 2001b)).

2.1.4.2. Flight trajectories. The position and orientation

of the head of flies flying in a textured box (size: 0.4

m� 0.4 m� 0.4 m) was measured at 1 kHz using small
sensor coils mounted on the head (Fig. 6; for details see

(Schilstra & van Hateren, 1998, 1999; van Hateren &

Schilstra, 1999)).

2.1.5. Stimulus reconstruction

Both the 3D-trajectory of a behaving fly and the

spatial layout of the setup used in the behavioural ex-

periments are known. To reconstruct the visual input of

the behaving fly, a 3D-model of the setup is generated

(Open Inventor, Silicon Graphics). The trajectory is

resampled with a sampling rate of 2220 Hz, i.e. six times

the presentation rate of FliMax. For each position in the

trajectory 14 flat images are rendered by perspective
projection to planes parallel to the 14 triangles of Fli-

Max. In this way, 14 cameras, each pointing to the

centre of one triangle, are simulated. The rendering is

Fig. 2. Logic circuit used to generate LED addresses from the sync pulses and the blue colour signal of a VGA graphics adaptor. The column

multiplexers connect the green and red signal to the column wires selected by the column address. The row multiplexers set the row wire selected by

the row address to a constant positive voltage every time the strobe signal is active. A CMOS switch and a sample-and-hold circuit (inset) are placed

at each crossing of wires in the schematic. The CMOS switches controlled by the active row wire connect the sample-and-hold circuits to the column

wires. The sample-and-hold circuits placed at a crossing of active column and row wires sample the signal, all other LEDs are unchanged in

brightness, because either the associated CMOS switch or the column multiplexer disconnect the sample-and-hold circuit from the input signals.
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done using Open Inventor and the Mesa (http://

www.mesa3d.org) OpenGL (SGI) implementation.

In order to reduce spatial aliasing and discretisation

artefacts (see below) 2D Gaussian filters are applied to

the green colour channel of the resulting RGB images.

The red and blue colour channels are not used any fur-

ther. The centres of the filters correspond to the centres

of the LEDs on the triangle. All filters have the same
width which approximates the spatial resolution of the

blowfly eye (Petrowitz, Dahmen, Egelhaaf, & Krapp,

2000; Smakman, van Hateren, & Stavenga, 1984), i.e.

their width at half-maximal amplitude is 1.75�.
The sixfold oversampling of the trajectory is then

removed by averaging the filter output for each LED

position over six time-steps. This measure results in the

proper motion blur, given the frame rate of the FliMax,
in those parts of the image that contain high image ve-

locities. It thus prevents temporal aliasing, and only

introduces a blur not significantly adding to the subse-

quent blur due to the temporal integration of fly pho-

toreceptors.

For each reconstructed image the (green) intensity

values are converted to the video memory format. This

conversion includes the reduction of brightness resolu-
tion from 256 to 8 intensity steps (3 bits). Simulations

using a model of fly photoreceptors (van Hateren &

Snippe, 2001) and a preliminary model of fly LMCs

(second order neurons presumably in the motion path-

way) indicated that the 3-bit discretisation could cause

flickering artifacts at moving edges and textures. These

effects are reduced to a negligible level by two measures.

First, the image is spatially preblurred (see above).
Second, the brightness of an LED is toggled between

two neighbouring values in consecutive frames, if the

correct brightness value is close to the mean of these

values. Subsequent temporal integration of these toggled

values by the fly�s peripheral visual system increases the

number of effectively representable brightness values, i.e.

the effective brightness resolution, by one bit. To avoid

the introduction of wide-field flicker, neighbouring
LEDs in each row are toggled out of phase. The toggling

halves the temporal resolution of the least significant bit

of the device, but the model simulations suggest that this

additional flickering is not transferred by the peripheral

visual system further down the fly�s motion pathway.

2.2. Experimental analysis

2.2.1. Animals and electrophysiological recording

All experiments were done on female blowflies of the

genus Calliphora. The animals were bred in our labora-

tory culture. To avoid in-breeding, the culture was re-

freshed several times a year with animals caught in the
wild. The dissection of the 1- to 2-day-old animals for

electrophysiological experiments followed the routines

conventionally used in our laboratory (see e.g. Warze-

cha, Egelhaaf, & Borst, 1993). Alignment of the flies� eyes
with the stimulus device was achieved according to the

symmetry of the deep pseudo-pupil (Franceschini, 1975).

Intracellular recordings from the HSE-cell in the right

optic lobe were made using electrodes which were pulled

from borosilicate glass (GC100TF10, Clark Electro-

medical) on a Brown-Flaming Puller (P-97, Sutter In-

struments). Filled with 1M KCl they had resistances
between 30 and 60 MX. Recordings were made with
standard electrophysiological equipment. The data were

low-pass filtered (corner frequency 2.4 kHz) and sam-

pled at a rate of 4 kHz (I/O-card DT3001, Data

Translation) using the VEE Pro 5.0 (Agilent Technolo-

gies) in conjunction with DT VPI (Data Translation)

software. The HSE-cell was identified by its response

mode, its preferred direction of motion and the location
of its receptive field (Hausen, 1982a, 1982b). FliMax

allows us to use standardised stimuli for cell identifica-

tion and therefore may eliminate the need for hand held

probes for this procedure. Experiments were done at

temperatures between 28 and 32 �C measured close to

the position of the fly in the centre of FliMax. Data

analysis was done with MatLab 6.0.

2.2.2. Stimulation program

Three different types of visual stimuli were presented

sequentially during an experiment: (i) horizontal clock-

wise and counter-clockwise motion of a vertical sinu-

soidally modulated grating pattern (wavelength 20�,
temporal frequency 2 Hz, contrast 0.98; azimuth: �120�
at the eye equator, elevation approximately �50�), (ii)
optic flow induced on the eyes of a walking fly, (iii) optic

flow induced on the eyes of a flying fly. The stimulation

protocol, repeated as often as possible, was as follows: 1 s

with all LEDs lit at half the maximum brightness, 0.5 s

fading of LEDs brightness to the values corresponding

to the first frame of the subsequently replayed recon-
structed image sequence, 3.4 s replay of one of the three

types of image sequences, 7 s interstimulus interval with

all LEDs lit at the mean brightness calculated from the

flight stimulus. The interstimulus interval ensured that

subsequent motion stimulations did not influence each

other.

FliMax covers large parts of the fly�s visual field. As
can be seen in the Mercator plot shown in Fig. 1B,
mainly the rear of the animal is not covered by the

stimulus. However, virtually the entire ipsi and contra-

lateral receptive field of the HSE-cell that is analysed

here is covered (Hausen, 1982b; Krapp, Hengstenberg,

& Egelhaaf, 2001).

3. Results

The HSE-cell is an output neuron of the visual system

and believed to be involved in providing relevant visual
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information that is used in course control. The HSE-cell

receives retinotopic input from the eye ipsilateral to its

main dendrite (Fig. 3). As a consequence, it is excited by
ipsilateral front-to-back motion and inhibited by back-

to-front motion. Moreover, it receives excitatory input

on its main dendrite from the contralateral H1-neuron

as well as close to its output terminal from the contra-

lateral H2-cell (Haag & Borst, 2001; Horstmann, Egel-

haaf, & Warzecha, 2000). Since both H1- and H2-neuron

are excited during back-to-front motion, the HSE-cell in

the right half of the brain can be expected to be excited
by optic flow generated during counter-clockwise rota-

tions of the animal about its vertical body axis and to

be inhibited during rotations in the opposite direction

(Fig. 3).

3.1. Conventional wide-field gratings

Conventional grating stimuli were used for experi-

mentation to test whether the responses obtained with
FliMax differ in any obvious way from those obtained

with stimulus devices used in previous studies, such as

mechanically moving drums or monitor screens. Fig. 4

displays a sample record of an HSE-cell response to

constant velocity motion in the preferred direction and

subsequently in its null direction. The record shows the

typical features of HSE-cell responses: They are char-

acterised by graded de- and hyperpolarisations relative
to the resting potential. On average, the depolarisation

during preferred direction motion is 15.2 mV (N ¼ 12)

and the hyperpolarisation during null direction motion

is )8.4 mV (N ¼ 12). These values are in the range of

Fig. 3. Input organisation of the HSE-cell of the blowfly. The HSE-cell receives input from the eye ipsilateral to its main dendrite from many re-

tinotopic motion-sensitive elements. As a consequence of this input, the HSE-cell is depolarised by front-to-back motion and hyperpolarised by back-

to-front motion. The HSE-cell receives additional input on its main dendrite from the H1-cell or close to its axon terminal from the H2-cell. The spike

activity of H1 and H2 is increased during back-to-front motion in the contralateral visual field and elicits EPSPs in HSE (see insets). As a conse-

quence of its input organisation the right HSE-cell can be expected to be depolarised during counter-clockwise rotations of the fly and hyperpolarised

during rotations in the opposite direction.

Fig. 4. Responses of the HSE-cell to grating patterns moving initially

at a constant velocity for one second in the cell�s preferred direction
and then for another second in the null direction. During the last

second the pattern is stationary. The graded depolarisations during

preferred direction motion are superposed by small-amplitude spike-

like depolarisations (see also bottom diagrams). The spike-like depo-

larisations are large when they are generated as rebound spikes after a

hyperpolarisation of the cell (bottom right).
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responses that were published in earlier accounts

(Hausen, 1982b).

Rapid spike-like depolarisations superimpose the

graded depolarisations. These spikelets vary in ampli-

tude to a large extent. They may hardly be discerned in

some preparations, but they may also reach amplitudes

of full-blown spikes in other preparations. Spikelets

superimposed on large graded depolarisations tend to be
smaller than those generated at the resting level of the

cell as, for instance, just after the release from hyper-

polarisation elicitied by null direction motion (Fig. 4).

These features of spikelets are well documented (Haag &

Borst, 1998; Hausen, 1982a) and the consequence of the

activation and inactivation properties of voltage-de-

pendent sodium channels (Haag, Theunissen, & Borst,

1997; Hengstenberg, 1977).
In conclusion, as judged by the responses to classical

grating patterns FliMax appears to be fully appropriate

as a visual stimulation device.

3.2. Optic flow generated by walking flies

The membrane potential of HSE-cells fluctuates in a
complex manner when the cell is stimulated with image

sequences as are seen by a fly walking around in its

environment. The characteristics of the membrane po-

tential fluctuations elicited by behaviourally generated

optic flow and what they may encode about the animal�s
self-motion and/or the layout of the surroundings have

been analysed in previous accounts. It was concluded

that the HSE-cell encodes the direction of turns of the
walking animal largely independent of the spatial layout

and texture of the environment. Only when the animal is

very close to an object, the neuronal responses are af-

fected by it (Kern et al., 2001a, 2001b). These previous

analyses were limited by the fact that image sequences

were presented on a monitor screen that covered only

part (though a large one) of the cell�s receptive field. All
displays with a cathode ray tube (CRT) do not show a
still image but iteratively flash each pixel at the frame

rate. In contrast, FliMax presents a constant image be-

tween differing updates as long as the image does not

move. Moreover, for technical reasons stimulation was

based in our previous studies on a 100 Hz video player

(Kern et al., 2001b). Although the frame rate was much

higher than that of conventional video players, it led to

some time-locking of the neuronal response to the frame
rate. With FliMax we now test whether the responses of

HSE-cells may differ when they are elicited by the same

image sequences. The responses will be related, as in our

previous studies (Kern et al., 2001a, 2001b), to the ro-

tational velocity component of the optic flow generated

by yaw movements of the fly.

Image sequences generated by walking flies were

presented to the same set of flies in two alternative ways:

(i) The device was operated at an update rate of 370 per

second, but the images were exchanged, as in our earlier

experiments with a computer monitor, at 100 exchanges

per second; this procedure implies that each frame was

presented 3–4 times. (ii) The device was operated at an

exchange rate of 370 per second. The image sequences

were linearly interpolated so that image exchanges could

be done at a rate of 370 frames per second.
As is obvious from the examples shown in Fig. 5C

and D the time course of the responses to both types of

image sequence are virtually the same. Moreover, these

responses do not differ in any pronounced way from the

time course of the responses that were obtained in our

previous study with a monitor screen as stimulus device

(compare traces in Fig. 5B with C and D). Only the

overall response amplitudes that were obtained with
FliMax are somewhat larger than those obtained with a

conventional stimulus device. Notwithstanding, this

comparison shows that the general results of our pre-

vious study are still valid and that the same conclusions

as were drawn in the previous study would have been

drawn on the basis of the improved visual stimulator.

Despite these similarities on the time scale at which

the responses were analysed in our previous study, the
temporal structure of the responses on a time scale of

milliseconds depends on the way the image sequences

were presented. This feature can be seen in the power

spectra of the responses (Fig. 5B–D, bottom row). As is

characteristic of fly HS neurons (Haag & Borst, 1997;

Warzecha, Kretzberg, & Egelhaaf, 1998) the responses

contain most of their power at frequencies below 10 Hz.

The attenuation of high-frequency components is a
consequence of time constants that are an inevitable

constituent of movement detectors (Egelhaaf & Borst,

1993). However, the power spectrum of the responses

obtained in our previous study with stimuli generated on

a monitor screen reveals pronounced peaks in the power

spectrum at 100 Hz, i.e. at the refresh rate of the mon-

itor as well as the exchange rate of the image frames, and

at higher harmonics of this frequency (Fig. 5B, lower
panel). These peaks are much reduced when the same

image sequences are shown without CRT flashing, but

still at an exchange rate of 100 Hz (Fig. 5C, lower

panel). This finding suggests that the time-locking of the

neuronal responses has to be attributed mainly to the

flashing of conventional monitors and not so much to

the rate of the image exchange. When the frame ex-

change rate is increased to 370 Hz, the maximum that is
possible with FliMax, no distinct peak is discernible at

this frequency in the power spectrum or at half this

frequency (Fig. 5D, lower panel), which is the resulting

frequency for the least significant bit (see Section 2).

These findings allow us to draw the following con-

clusions. (i) Even if the responses time-lock to the up-

date and/or frame rate of the motion stimulus on a fine
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time scale, the responses are virtually indistinguishable

on a coarser time scale, (ii) Exchange rates of 185/370

Hz as are possible with FliMax are fully appropriate to

elicit the illusion of smooth motion in fly motion sensi-

tive neurons.

3.3. Optic flow generated by flying flies

The membrane potential of the HSE-cell fluctuates

much in response to image sequences generated during

free flight (Fig. 6). The membrane potential fluctuations

appear to be, at least for some sections of the flight,

faster than those induced while the animal is walking.

This might be the consequence of the angular velocity

and frequency of head and body rotations (Schilstra &

van Hateren, 1999; van Hateren & Schilstra, 1999) being

often considerably higher during flight than when the
animal is walking. As the profile of head angular ve-

locity (Fig. 6B) indicates the animal executes a sequence

of rapid saccadic turns about its vertical body axis.

During saccades the head may reach angular velocities

of about 3000�/s. Between saccades the animal flies rel-

Fig. 5. Responses of the HSE-cell to behaviourally generated optic flow as experienced by a walking fly. (A) Angular velocity of the fly as a function

of time (left) and walking track within the arena (right). The orientation of the fly�s body axis is shown only at three instants of time; positive
(negative) values denote counter-clockwise (clockwise) turns. (B) Section of the average response of 8 HSE-cells stimulated with a computer monitor

at a frame rate of 100 Hz (upper diagram) (Data taken from Kern et al. (2001b)). Average power spectrum of individual response traces have a

pronounced peak at 100 Hz and at integer multiples of this frequency (see asterisks; bottom diagram). (C) Average response of 15 HSE-cells

stimulated by FliMax at a rate of 370 Hz; the effective image exchange rate was 100 Hz (upper diagram). The corresponding average power spectrum

of the individual response traces has a peak at 100 Hz which is, however, much smaller than the peak shown in B (bottom diagram). (D) Average

response of 11 HSE-cells stimulated by FliMax at a rate of 370 Hz; the image exchange rate was 370 Hz (upper diagram). The corresponding average

power spectrum of the individual responses does not show any obvious peak at 100 Hz or 370 Hz (bottom diagram).
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atively straight, i.e. angular velocities are relatively small

(Schilstra & van Hateren, 1999). The overall optic flow

as projected onto the receptive field of the HSE-cell and

weighed according to the local preferred direction and

sensitivity of the cell (Krapp et al., 2001) is largely

dominated by its angular velocity component. The

Fig. 6. Responses of the HSE-cell of a blowfly to behaviourally generated optic flow as experienced during a free-flight manoeuvre. (A) Flight

trajectory monitored in a cubic cage (0.4� 0.4� 0.4 m3) covered on its side walls with images of herbage. The position of the fly is shown by small

spheres every 10 ms. The position and orientation of the head are shown every 130 ms; the starting position is indicated by the green �fly�, the end
position by the magenta �fly�. (B) Responses to behaviourally generated stimuli. Top trace: individual response; HSE responds to motion with graded
de- and hyperpolarisations; spike-like depolarisations superpose the graded potential changes. Second trace: average response (n ¼ 7), smoothed with

a Savitzky–Golay polynomial filter (width 25 ms, polynomial order ¼ 1). Third trace: Optic flow during flight manoeuvre projected on local response

field of the right HSE-cell (Krapp et al., 2001). The optic flow is weighed according to the cell�s local preferred directions and motion sensitivities.
Positive (negative) values denote motion in the cell�s preferred (null) direction. In the equatorial part of the eye, the preferred direction of the HSE-
cell corresponds to front-to-back motion. Bottom trace: Angular velocity of the fly�s head. Sharp angular velocity peaks corresponding to saccade-
like turns of the fly dominate the time-dependent angular velocity profile. Positive (negative) values denote counter-clockwise (clockwise) turns of the

head in a head-centred coordinate system. In contrast to expectations based on the input organisation of the HSE-cell there are no obvious response

peaks during preferred direction motion evoked by counter-clockwise saccades. However, there are pronounced hyperpolarisation going along with

clockwise saccades (see arrows). (C) Power spectrum of individual responses of an HSE-cell to image displacements as experienced during free-flight

manoeuvres. The power spectrum is mainly flat up to frequencies of about 10 Hz. At higher frequencies the signal power decreases. (D) Saccade-

triggered average of the HSE responses (N ¼ 1). Counter-clockwise saccades (left) go along with image motion in the HSE-cell�s preferred direction,
clockwise saccades (right) go along with image motion in the null direction. Zero time corresponds to the maximum angular velocity. The resting

potential was subtracted before averaging. 290 saccades from 10 different flight trajectories were evaluated. The optic flow corresponding to each

trajectory was replayed between 2 and 7 times.
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translational optic flow component is much smaller than

the rotational one (compare bottom traces in Fig. 6B).

As judged from its input organisation (Fig. 3), the

HSE-cell is expected to respond best to optic flow elic-

ited by rotations of the animal about its vertical body

axis. The responses to optic flow experienced by free-

flying flies only partly fit this expectation (Fig. 6). The

HSE-cell responds with graded depolarisations that are
superimposed by spikes almost during the entire flight

sequence. Clockwise saccades going along with optic

flow in the cell�s null direction lead to pronounced hy-
perpolarisations. The amplitude of the hyperpolarisa-

tions does not appear to increase consistently with the

saccade amplitude. In contrast to clockwise saccades,

counter-clockwise saccades eliciting preferred direction

motion do not lead to corresponding depolarisations.
This characteristic is not merely due to saturation of the

response, because saccades fail to elicit depolarisations

even during phases of the flight sequence where the

overall depolarisation of the cell is much smaller than

the maximal depolarisation level that can be evoked by

visual motion (Fig. 6B). As is shown by the saccade-

triggered average of the neuronal response, the cell even

slightly hyperpolarises as a consequence of counter-
clockwise saccades although the optic flow is in the

preferred direction of the cell. This hyperpolarisation,

however, is much smaller than the one elicited, on av-

erage, by saccades leading to image displacements in the

null direction (Fig. 6D).

From a technical point of view it is important to note

that, in accordance with the results shown if Fig. 5, no

distinct peak is discernible in the power spectrum of the
neuronal responses at the frame exchange rate of 370 Hz

that was used to obtain the responses to optic flow as

generated in free flight (Fig. 6C).

In conclusion, the time course of the response of the

HSE-cell during complex free-flight manoeuvres is far

from being proportional to the time course of the an-

gular velocity or the optic flow as projected onto the

receptive field of the cell. Moreover, it is hard to predict
the performance of the HSE-cell during complex flight

manoeuvres, although its input circuitry and its re-

sponses to a wide range of motion stimuli are known in

great detail.

4. Discussion

FliMax is a high-speed panoramic visual stimulation

device which is suitable to analyse the response pro-

perties of visual interneurons even when they have very

large binocular visual fields. Rapid image displacements

which are characteristic of the natural visual input of
fast moving animals can be presented with FliMax. It

could be shown for an identified motion sensitive neuron

in the visual system of the blowfly, the HSE-cell, that its

responses to behaviourally generated image sequences

are very complex. These responses cannot easily be

predicted from the established input circuitry of the

neuron, although its biophysical properties and re-

sponses to a wide range of motion stimuli are known in

great detail (Borst & Haag, 1996; Haag & Borst, 1996,

1997, 1998, 2000; Haag et al., 1997, 1999; Hausen,

1982a, 1982b; Horstmann et al., 2000; Kern et al., 2000;
Warzecha et al., 1998). This finding suggests that the

computational significance of visual interneurons can

only be assessed if they are characterised not only by

conventional stimuli often used for systems analysis, but

also by behaviourally relevant input. FliMax represents

a versatile and useful system which allows us to achieve

this goal even in animals with almost panoramic visual

fields and fast eyes.

4.1. Methodological considerations

The main difference of FliMax to existing LED-based

stimulators (Baader, 1991; Strauss, Schuster, & G€ootz,
1997) is that it directly uses the output of a specially

programmed VGA graphics adaptor. This feature is the

main trick that enables FliMax to reach frame rates of

370 frames per second. This high frame rate is not only

necessary because of the high temporal resolutions of

insect eyes (reviews: Juusola, French, Uusitalo, & We-

ckstr€oom, 1996; Laughlin, 1994), but also to prevent

spatio-temporal aliasing from affecting the neuronal
responses to rapid image displacements of relatively

fine-grained patterns.

There are several limitations of the special design of

FliMax that need to be discussed. Although the tem-

poral resolution of FliMax is very high, its spatial res-

olution is relatively poor, because it consists of only

7168 LEDs, corresponding to an angular separation of

LEDs judged from the centre of FliMax of about 2.3�.
This spatial resolution might be adequate for analysing

vision of many insects, because the number of LEDs

roughly coincides with the number of ommatidia and,

thus, retinal sampling points. Although the spatial grid

of LEDs that are used for stimulation is much coarser

than the spatial resolution of the human eye, a vivid

impression of a smoothly moving pattern can be evoked

by FliMax even in human observers. Hence the elec-
tronic principles underlying FliMax may well be adap-

ted as a panoramic optic flow stimulator for experiments

on a wide range of species including vertebrates.

Another limitation of FliMax pertains to the flatness

of the printed circuit boards which form the modules of

its icosahedrical design. Thus, the angle at which the

LEDs are seen by the animal in the centre of FliMax

varies systematically from the centres of the boards to-
wards their edges. As a consequence of the directional

emittance characteristics of the LEDs, their apparent

brightness decreases concomittantly to about 20% at the
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boards� edges relative to the apparent brightness of

LEDs in the centre of the board. To check for potential

consequences of this feature we covered in control

experiments (data not shown) the centre of the LED-

triangle with a circular grey filter (radius 5 cm, trans-

mission 20%). This area of the LED-triangle stimulated

the most sensitive region of the HSE-cell�s receptive
field. Although this filter largely affected the brightness
distribution within the receptive field of the HSE-cell,

the responses to visual motion did not noticeably

change. This is consistent with simulations using a

model of the fly peripheral visual system (see Section 2),

showing that steady spatial gradients are mostly re-

moved by peripheral gain controls. Hence, we conclude

that the neuronal responses, at least to optic flow stim-

uli, are not affected by the brightness gradients that are
an inevitable consequence of the flat design of the

printed circuit boards in their current form. In future

versions of FliMax the LEDs might be bent towards the

centre of the stimulator.

In contrast to limitations in the spatial details that

can be resolved by FliMax, there are no functionally

relevant limitations with regard to its temporal resolu-

tion. Even angular velocities of up to 3000�/s did not
lead to aliasing, at least at the relatively coarse spatial

resolution at which the environment is seen. More-

over, the neuronal responses of the fly HSE-cell did not

time-lock to the image displacements if the frames are

displayed at a rate of 370 per second. Since the photo-

receptors of flies have a much higher resolution than

those of vertebrates it appears to be likely that the

temporal resolution of FliMax does not represent a
limitation for most visual systems.

4.2. Neuronal responses to natural optic flow

We have shown that the responses of the HSE-cell to
complex optic flow as may be generated on the eyes in

behavioural situations differ from what may be expected

on the basis of the wiring diagram of the input circuitry

of the analysed neuron. The reason for this finding are

most likely non-linearities inherent in optic flow pro-

cessing.

The mechanisms underlying visual motion detection

are inevitably non-linear (Borst & Egelhaaf, 1993;
Poggio & Reichardt, 1973). As a consequence of such

non-linearities and delay filters the responses of motion

sensitive wide-field neurons, such as the HSE-cell, have

been shown to depend not only on the angular velocity,

but non-linearly also on acceleration and higher-order

temporal derivatives of pattern motion (Egelhaaf &

Reichardt, 1987). Therefore, the HSE-cell was found to

mimic the time course of pattern motion only when it
does not change too rapidly (Egelhaaf & Reichardt,

1987; Haag & Borst, 1997). The peculiar features of the

neuronal responses of walking and flying flies that were

described here and in previous studies (Kern et al.,

2001a, 2001b) may be attributed, at least to a large ex-

tent, to the specific dynamical properties of the motion

detection system. From a functional point of view it is

important to note, although this may be surprising, that

both during walking and during flight, the fly�s motion
vision system apparently does not operate in its linear

range, where it faithfully reproduces the time course of
pattern velocity. This point needs to be stressed, because

it is frequently implicitly assumed that the main task of

fly motion sensitive neurons is to reproduce the time

course of image motion (Bialek, Rieke, de Ruyter van

Steveninck, & Warland, 1991). The present study shows

that a priori assumptions of this kind should only be

made with some caution and that only on the basis of

responses to behaviourally generated stimuli inferences
concerning the natural operating range of the system

should be made.

The non-linear spatial integration properties of the

HSE-cell (Borst, Egelhaaf, & Haag, 1995; Egelhaaf,

Haag, & Borst, 1994; Hausen, 1982b; Single, Haag, &

Borst, 1997) are likely to be another reason for the de-

viation of the responses to behaviourally generated optic

flow from expectations. Small stimuli already lead to
near-maximal responses of the cell. Increasing stimulus

size or the number of texture elements does not increase

the responses much further. Although this basic feature

of fly motion-sensitive neurons is known for long, it has

not yet been analysed in which way different objects

moving simultaneously at different velocities in different

directions in the cell�s receptive field may interact to
shape the final response of the cell. Hence, it is currently
not possible to assess to what extent the complex neural

responses to behaviourally generated optic flow depend

on the non-linear spatial integration properties of the

neuron.

Finally, understanding the responses to natural image

flow may be further complicated, because the properties

of fly motion-sensitive neurons were shown to change

as a result of stimulus history (Borst & Egelhaaf, 1987;
de Ruyter van Steveninck, Bialek, Potters, Carlson, &

Lewen, 1996; Fairhall, Lewen, Bialek, & de Ruyter van

Steveninck, 2001; Harris & O�Carroll, 2002; Harris,
O�Carroll, & Laughlin, 1999, 2000; Maddess & Laugh-

lin, 1985). Although the functional significance of these

adaptational processes is still debated, they may well

play a role in adjusting the operating range of the

mechanisms underlying optic flow processing in different
behavioural contexts.

In conclusion, as a consequence of non-linearities

inherent in visual information processing and the pe-

culiar spatio-temporal properties of natural visual input

which may even differ much in different behavioural

contexts, it is not possible to make sound predictions on

the basis of analyses with conventional stimuli about

how a visual system operates under natural conditions.
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A versatile and high-speed visual stimulator such as

FliMax may help to analyse the performance of neuro-

nal circuits under behaviourally relevant stimulus con-

ditions.
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