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Abstract of Jukes and Cantor (1969), several generalizations and al-

Motivation: We present a new probabilistic model of theterations have been presented (e.g. Kimura, 1980; Felsens-
evolution of RNA-, DNA-, or protein-like sequences and in, 1981; Hasegawet al, 1985; Schoniger and von Hae-
software tool, Rose, that implements this model. Guided Sgler, 1995). These models were designed for the study of
an evolutionary tree, a family of related sequences is creat@dolecular evolution at the sequence level, focusing on a
from a common ancestor sequence by insertion, deletion anll-founded statistical basis rather than on producing se-
substitution of characters. During this artificial evolutionary quence families most similar to those usually considered in
process, the ‘true’ history is logged and the ‘correct’ multiplemolecular biology. The early models even ignored the well-
sequence alignment is created simultaneously. The modelown fact of insertions and deletions (indels) during evol-
also allows for varying rates of mutation within theution. Some models (Thore¢al, 1991, 1992) consider in-
sequences, making it possible to establish so-called sgels, but still have some other restrictions.

quence motifs. To create most realistic sequence families, we have added
Results: The data created by Rose are suitable for théndels and ‘sequence motifs’ [patterns in a family of related
evaluation of methods in multiple sequence alignmerfequences (Wu and Brutlag, 1995)] to the so-called HKY
co_mputation and the prediction of phylo_genetic reIati_on-mode| (Hasegawat al, 1985) which only allows the de-
ships. It can also be useful when teaching courses in @gription of arbitrary rate substitutions in DNA sequences.
developing models of sequence evolution and in the studwgt aiso extended the underlying alphabet to cover amino

evolutionary processes. , o acid sequences. An evolutionary process is simulated by iter-
Avallablllty: Rose is available on the_ Bielefeld B|0|nform§lt-ated mutation of a ‘common ancestor sequence’ following
ics WebServer under the following URL: http://bibis-yhe eqges of a given ‘mutation guide tree’. This way, the to-
erv.TechFak.Un|-B|eIefeId.DE/ rose/ The source code Iﬁology of the tree induces the relationship of the sequences.
avallablgfulion reTquisFt. K Uni-Bielefeld DE The mutations are performed by insertion, deletion and sub-
Contact: folker@TechFak.Uni-Bielefeld. stitution of single characters or whole subsequences. Figure
1 sketches the creation process of a family of four sequences.
In addition to knowing the exact evolutionary distance of the
It is useful, for many reasons, to have a family of sequencesquences, our approach provides us with their whole evol-
with well-known evolutionary history. This kind of data is utionary history and the true alignment. Therefore, in con-
used in the study of evolutionary processes, in the evaluatitiast to biological applications, it is easily possible to verify
of multiple sequence alignment methods, and in the recopredictions about alignments and phylogenetic relationships
struction of phylogenetic trees. Other applications in comdrawn from the sequences simply by comparing the pre-
putational molecular biology may also benefit from its availdicted phylogeny to the tree that was used in the creation
ability. Unfortunately, nature does not provide ‘benchmarkprocess.
prOblemS well suited for all these app"CﬂtiOﬂS since there is NO|Nn fact1 we can go one step further and evaluate the ad-
way to learn the exact phylogeny of the sequences involveglyuacy of mathematical models such as maximum parsi-
Therefore, itis common practice to create sequence data artffipny or sum-of-pairs multiple alignment. Given a program
cially, trying to be as close to the real world as possible.  hat calculates the best solution according to the model on a

The simulation of evolutionary processes at the moleculgfy, set generated by Rose, we may contrast these results to
sequence level has a long tradition. Starting with the modg|q e’ phylogeny or alignment.

Introduction

The data created by our tool Rose (random model of se-
3Present address: Department of Computer Science, University quence evolution) have been extensively tested with the Di-
of California, Davis, CA 95616-8562, USA vide-and-Conquer Alignment (Stoye, 1997; St@teal,
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representing the probability of an indel evepg or pgel,
combined with indel length functiohgs andl e, respective-
ly; and

(vii) a mutation probability vector
of lengthn allowing one to specify regions of different muta-
tion rate, e.qg. to specify sequence motifs.

Given these parameters, Rose generates
(i) a family of sequences, ..., Sn

Fig. 1. Example of a creation process of four sequences from acontaining sequences with average lengtand average

common ancestor ‘cgtat’. The underlined part denotes a sequen
motif with smaller substitution probability.

1997) and GeneFisher (Giegeriehal, 1996; Meyer and
Schleiermacher, 1996) software packages.

Systems and methods

Sairwise evolutionary distanchy;

(il) a multiple sequence alignme#t

of the sequences, ..., S, that is correct with respect to the
creation process, i.e. it reflects the ‘true’ evolutionary history
of sq, ..., Sn; and finally

(iii) a relatedness tre®
showing the phylogenetic relationship of the created se-

For reasons of speed, efficiency and portability, Rose wa&siencesT’ is the smallest subtree divhich contains all the
developed under UNIX using the ANSI C programming lannodes corresponding to the generated sequences (and poss-
guage. The software has been tested on various UNIX pld@ly some additional inner nodes which can be seen as extinct

forms e.g. DEC, HP, LINUX-PC, SGI, Sun. The actual pro
gram development was carried out on a Sun Sparcstati

ancestors).
orAn outline of the algorithm is given here:

using gcc and Sun SPro C compilers, as well as bison and flBRS&A, S, n, f, T, day)
to build the input parser. The publicly available version runBegin

on a Sun Enterprise 3000 server.

Algorithm
The model

Our procedure requires the following input:

(i) an alphabet A
of sizel, e.g. the DNA alphabet {A, C, G, T} or the 20 char-
acter amino acid alphabet;

(i) a root sequenceor an average sequence length

(if no root sequence is specified, arandom sequence of Ien%t

n= 1 is generated);
(iii) character frequencids= (fy, ..., f})
1

satisfying > f
i=1
root sequence (if not specified);

(iv) a mutation guide tre€ or a sequence distandg,
the tree may be supplied with edge lengths (otherwise
edges are assumed to have uniform length 1), if no tree

=1 used for insertions and the creation of théi

¢

if undefineds)
s :=create root_sequenc@@, n, f);

fi
if undefinedT)
T :=create guide treg(dy) ;

fi
T.seq:=s; //copy root sequence to root of tree
travers€T); //recursively mutate sequences along tree
print_sequencd3); //generate output
print_alignmen(T);
ﬁ)rint_tree('l’);
end
where sub-functiotraverseis implemented as follows:
travers€T)
oreachsubtreel” of T do

T'.seq:=evolvéT.seq

travers€T’)
od
|In the following subsections, we take a closer look at the
gferent steps of Rose.

entered, a binary mutation guide tree of user-defined average

pairwise sequence distardig (see the subsection on adjust-

ing the edge lengths) is created;
(v) a mutation matrixv

The root sequence

The implementation of functiooreate_root_sequencs
straightforward: if no pre-given root sequence is specified,

of sizel x | representing pairwise mutation frequencies usegach of then positions in the root sequence is independently

for substitutions;
(vi) insertion and deletion probability functions

filled by a random process that returns lettgfl&i <) with
probabilityf;.
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depth K .
*® D,:= > (2 - i)
0 Uy i=0
- = 2t i(k+-1) + 2
K

2 Additionally, there ar& nodes ‘above’ the observed node,
3 each being the starting point of a subtree. Summing the dis-
. tances to all these nodes gives:

X k—{x—i)

Uy := Z(| + > 2 i +j))

i=1

Fig. 2.Uniform binary tree of deptk= 4 withK = 25— 1 = 31 nodes. = 26**1l — k + 3)
For a node in deptk = 2 (marked by the circle), those nodes + 250 + Kk —3) + &
contributing toDy andUy, respectively, are shown.

Thus, the total sum of distances from a node in level
all other nodes is:

Rose works with arbitrary alphabets and any matching list N,:= D, + U,
of frequencies. For amino acid sequences, we implemented = kT2 4 k(e 4 k —3) 4 K + 2
as default values the normalized frequencies of the amino

acids given in Dayhotét al (1979), and for nucleotides we  Averaging this value over all pairs of distinct nodes, we
use the frequencies given in Agarwal and States (1996). gbtain:

k
The mutation guide tree 2(2" "N,
do i = 20
The general behavior ofeate_guide_tress similar to that K(K-1)
of create_root_sequenciéno treeT is specified, Rose com- _ g g K+ 22k
putes a uniform binary tree wik+ 1023 nodes whose edge (2k+11)(2+-2)

labels are adjusted such that the average sequence distance . )
(i.e. the expected length of a shortest path between two ranWhich approximates
domly chosen nodes in the tree) meets the user-defined value K- 2k+1 — Dk+2
day (see below). After the tree is created, either only from the ZT =2k-2)
leaves or from the leaves and inner nodes (chosen by th‘?or sufficientl
. . . y largek.

user), the required number of sequences is selected unlform-Similarly if all edges have length we get:
ly. So, in the latter case it can happen that, at the same time; ' )
an inner node sequence and a sequence from the correspon- d., = 2bk — 2)
ding subtree is chosen.

Obviously, it is possible to save space and computation
time by pruning the unnecessary edges in the tree before p%'lm

Hence, to obtain sequences of a pre-given relatedness, we
ply have to alter the edge length

forming the evolutionary process if not all of the sequences Aoy
are contained in the final sequence family. b= 2k — 2)

Adjusting the edge length&ssume a binary uniform tree i i
of depthk with K = 2¢* 11 nodes and constant lentbf For example, to obtain sequences of an average distance
every edge (see Figug For the moment, ldt= 1. Then, dav= 250 PAM, the edge length of our default tree with 1023
the average sequence distadggs the sum of all pairwise = 29+1_ 1 nodes has to be setiic= 250 __ _ 18

209 - 2)

Note that in the above calculation we assumed that the se-
guences are selected from both the internal nodes and the
leaves of the mutation guide tree. In case sequences are se-

Nected only from the leaves, a similar calculation leads to the
formula:

distances in the tree divided KyK —1), the number of pairs
of distinct nodes. Consider, therefore, a node in leeéthe
uniform binary tree, 8k< k. In the example of Figui& we
have choser = 2. The corresponding node is indicated b
a circle.

In each level, 0<i < k —k of the subtree ‘below’ the ob-
served node, there arerbdes with distance The sum of b~ day
distances to all these nodes is: T 2k-1)
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Creation of child sequences istic: the mutation rate of genomic sequences found in nature

is not constant for all positions in the genome. Mutations in

We now take a closer look at the implementation of functiof,yinng with strong functional and/or structural importance
evolve the core of Rose. The following steps are used 9re less often observed than elsewhere

create a new ‘descendant’ sequesegfrom a given ances-

tor slequenceo|d. allow the use of different rates of mutation for different re-
evolvéSoia) gions of the sequence by a veataf lengthn with values

1. The mutation functiomutatefor the given al- y >0 which linearly increase/decrease the degree of variabil-

phabet is applied to every positiom Spiq: ity at positioni of the root sequence. A value= 1 yields

o : exactly the variability given by the edge length. Valjes
Sneul] = mutateSoidi, b) 1 suppress mutationg € 0: no mutation) and higher values

whereb is the length of the branch leading to the new; > 1 allow the specification of regions of particular high

node. The mutation matrix is selected with respebt to mutation rate, e.g. so-called hot spots. The vecierin-

as described below. herited by child sequences. Indels are forbidden in regions
with v < 1, thus establishing conserved sequence motifs. In-
serted regions have a variability of 1.

Therefore, we have generalized the functwolve we

2. One or more subsequences are deleted gk
taking into account the deletion probabilige and the
deletion length functiobhyer.

perform deletion$pdey, lge)

, _ Creation of indels
3. One or more sequences are inserted at arbitrary

positions iNSpew _ ) ) ) _
It is obvious that the exact mechanism of insertion and dele-

perform insertiongpins, lins) tion is crucial for the simulation of evolution. Unfortunately,
Functionmutatemakes use of the mutation probability ma-there is neither a well-established model (like HKY for nu-
trix M. An entryM([i j] is interpreted as the probability for the cleotide substitution) nor consensus as to the number of in-
jth letter of the alphabet A being substituted byitindetter. ~ dels that corresponds to a certain evolutionary distance. We
! therefore chose to accommodate a wide range of possibilities
Hence, the sum of each columnMishould be> M[ij] =  with a function that we call inverted gap function. The fol-

lowing pseudocode shows the selection and creation of in-

degree of stability: for example, a valuawif,i] = 0.99 for all sert!qns; delet!ons are h‘%”d'ed ana_lt_)gously (except for an
i =1,..., | will result in an average mutability of 1% accepteoadd't'onal test if the mutation probability of all deleted char-
mutations per unit of branch length. acters i 1).

In case the mutation matr is the probability matrix of ~Perform insertiongpinsing)
one accepted amino acid substitution per hundred sites (1@9'—n o
PAM) given in Dayhofiet al (1979), which is our default for ~ do T.disttimes
proteins, we denote this new unit of measure for the distance  if random_number_between_zero_and (prgans

i=1
1forallj=1,...,]. The diagonal valugdl[i,i] determine the

of a child sequence from its ancestor including insertions and pos:= choose_random_positidength(siq));
deletions by 1 PAM* where the parameters for insertions and len:= compute_insertion_lendfs);
deletions have to be specified additionally. ify>=1

Evolutionary rates of more than 1 PAM* are obtained by do_insertiorfpos len);
applying the creation procedure repeatedly. As Schoniger fi

and von Haeseler (1995) have shown, the use of a custom  fi

matrix (such as PAM 10) helps to save time when the number od

of substitutions exceeds an upper bound. At each step along end

an edge of the guide tree, depending on the mutation rate, thé&he starting position for the insertion ohoose_ran-
decision is made either to use pre-computed PAM* matricetom_positioris selected uniformly among the positions 1,
repeatedly or to compute a hew custom matrix. ..., length(sgig). To allow a high degree of variability, Rose

accepts any quantized length functigg= 1%, ..., |“n with

Sequence motifs ng _ _ _
g{ 10 = 1. Then, lengtlenin (1, ..., gins) is selected with

Up to this point, we have assumed a constant rate of mutati N
over the whole length of the sequences. This is not very regirobability (.
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Functiondo_insertionfinally is similar to the creation of @ rsaEaaLVSPERGDDEOVPNKDKCYYHGHKDGKRINVKTPPTGPLVVGVHQ

. H H H Ho YEGANEVGATCEESSYCYVKEQAIQVKESQECTDFARHEVKSFRGVPGKLTEVIPVPL
the root sequence; the characters inserted maintain the initial e, wevenprincsnFrmTYESKCHTAANCLLGMKTEL TEPTEVOR

character distribution. SGVTEPVPNPVPATGIKLDKYTREENCLGMCLMGMGPPMVTIGEVGT
(b) FSAEAALVSP--————=— GKGDDEQVPNKDKCVYHGHKDGKRMNVKTPPTGPLVVGVHQ
. YEGANEVGATCEESSYCYVKEQAIQVKESQECTDFARHEVKSFRGVPGKLTEV IPVEL
|mp|ementat|0n YGAAHPVGDP-——=—=—- LFLNH- - -YESKGHTAAMCLLGMKTEL IEP- TEVOA
SGUTEPVPNP- -~~~ VPATGIKLDK- - -YTREENCLGMCLMGMGPPMVTI -GEVGL
|npUt/0UtpUt formats (¢©) FSAEAALVSP---——--- GKGDDEQVPNKDKCVYHGHKDGKRMNVKTPPTGPLVVGVHQ
YEGANEVGATCEES SYCYVKEQATOVKESQECTDFARKEVKSFRGVPGKLTE- VI BVEL
. . . YGAAHPVGDD- ===~ - IKLGSLFL---NHYESKGHTAAMCLLGMKTELIE-PTEVQA
The user mput is via an HTML forms mterface, the user can  SGVTEPVENP-------- VPATGIKL--~DKYTREENCLGMCLMGMGPPMVT-IGEVGI

also choose to feed a file with all the input information into

Rose using a simple tag value format. The format and thElg 3. (a) Sample family of random sequences obtained with Rose

parameters are further described in our online manue}brn 50 andn = 4. ) "True’ alignment of these sequencas A
http://bibiserv. TechFak.Uni-Bielefeld. DE/rose/manual.html.  core_optimal alignment according to PAM 250 substitution matrix

and gap functiog(l) = 8 + 12 computed with the program MSA.
Resource requirements While the overall optimal alignment is correct, the exact location of

the gaps does not coincide in all cases.
On a Sun Ultra | 167 MHz CPU, Rose used the following

resources:
(@ AGTG------ ACTATAAT---CG---GAGGACAG--
Table 1 ATTCTGT---CCTATAAT- - ~CG- - —GAGAARAGCC
. AGTCTGT---ACTATAATGTTGG- - -GAGGAAAAGC
AGTCCGTTGC -—TATAAT -~ -GG-~~GAGGAAAACC
AATCTGT---AGTATAAT- - -GGTGTGAGGAAAGCC
Protein DNA
(b)  AGT----GACTATAAT---CGGAGGACAG--—
#segs s Mbyte #seqs s Mbyte ATTCTG-TCCTATAAT---CGGAGAARAGCC
ﬁgggg G - TACTATARTGTTGGGAGGAARAGC
TTGCTATAAT-~-GGGAGGAAAACC
10 18 11 10 3.3 14 AATCTG-TAGTATAATGGTGTGAGGAAAGCC
100 9.8 1.9 100 18.6 3.8
500 24.9 4.2 500 49.5 9.6

Fig. 4. DNA example with TATAAT motif: &) the ‘true’ andlf) an

Here, the created protein sequences have an average lenggtimal alignment.
of 250 letters and an average relatedness of 250 PAM*; the
DNA sequences have an average length of 1000 letters and
an average relatedness of 50. by the (distance) scores for both alignments: the ‘true’ align-
ment has an alignment score of 5184, while the optimal
alignment has a ‘better’ score of 5166.

A simple DNA sequence family with mdtie use of mo-
The following examples show some of the features and dertifs in sequence families created by Rose is demonstrated in
onstrate the versatility of Rose. Figure4. The upper part shows the ‘true’ alignment of a fam-

A protein sequence family Figure3a, a sample family ily of five DNA sequences which contains a conserved TA-
with m= 4 sequences of average lenyth50 is shown. This  TAAT motif obtained with Rose using a mutation vector dis-
family is created with the default settings of Rose: a uniforrallowing mutations within the motif, while outside the muta-
binary mutation guide tree of degtls 9 and uniform edge bility remains normal. Figuréb shows a score-optimal
lengthb = 18 PAM*. The probability for insertions and dele- alignment of these sequences computed with MSA [unit sub-
tions is set t@jns =pPgel= 0.3%, and the insertion and deletionstitution cost with gap functiag(l) = 2 +l]. It is considerably
length functions are exponentially decreasing with a maxshorter than the ‘true’ alignment. The parsimony objective
mal length value of 10. underlying the sum-of-pairs scoring of MSA fails here.

The alignment given in Figui@b is the ‘true’ alignment A protein sequence family with varying mutation ré&ie.
corresponding to the creation process of the sequences. Figdly, we present a protein example where we fixed the root
ure 3c shows an optimal alignment according to the PAMsequence and the mutation guide tree. We also varied the mu-
250 substitution matrix (Dayho#t al, 1979) (in distance tability along the sequence.
form with values between 0 and 24) and gap fung{on= As root sequence, we took the human hemoglobin alpha
8 + 12 computed with the program MSA (Lipmat al, sequence. The mutation guide tree is shown in Figuree
1989; Gupteet al, 1995). While the overall optimal align- true alignment of our ‘artificial globins’ is shown in Figure
ment is correct, the exact location of the gaps does not c6- The histogram above the alignment shows the mutation
incide in all cases. This suboptimality of true alignments reprobability along the sequence allowing a higher mutation
garding the standard alignment score functions is also showate between the helices than within.

Examples
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and with the same rate in the whole family, we have not yet
included a feature that simulates different rates of evolution-
ary pressure in different branches of the tree, enabling differ-

15 ent lineages to evolve independently within our tree. This has
seq. > been observed by a number of biologists (Greer, 1981, 1990;

seq. 3 Schulzet al, 1986; Benneet al, 1994). While we are plan-
seq. 4 ning to include this feature in a future release of Rose and

extend the scope of our model even further, it is important to
note that all results have to regard the adequacy of the chosen
evolutionary parameters, and that simulations can only aid
the evaluation of algorithms. What matters in the end is the
- success on real biological sequences.

A--LSPADKEKAKAGWDSVGAHAGEYGAETLQRLFLAY PTTKTYFEEFDLSHGSAKVKGH
A--LSPADKENAKASWGRLGAHTGEYGAETLERLFLSYPTTKTYFEQFDLSHGPAKVKGH

Fig. 5. Relatedness tree for the sequences shown in Figure 6.

AR
VQTLSAAKKTTVRAAWGKVGGHSGEYGDQALORMFLGLPTTKDYFPQYELGRGTAQVKGH AcC kn 0W| ed g ements

R DAL A L SV DP TP KLMSRCLLVTLGEHL-GOFA The authors wish to thank Robert Giegerich for encouraging

ggg@%ﬁ;&;‘%’éﬁﬁ%ﬁgﬁ§§§§§§§§s§§§§§%§§§§ﬁ§%§§§§ us to work on this approach and Marcie McClure for making
a good point. We would also like to thank the referees for
valuable hints. The work was patrtially supported by the Ger-

PATQARLDKFLGSVETPLTGEALSALFWN

PAVEASLAKFLVSIATAL ey SALE YN man Ministry for Education and Sciences (BMBF), the Min-
PAVLASEEKFLAGVSTAGNG- - -2 KR istry of Science of North Rhine Westfalia (MWF-NRW), the

German Research Council graduate program (DFG-GK)
Strukturbildungsprozesse, and the German Academic Ex-

Fig. 6. Family of ‘globins’ created by using human hemoglobin echange Service (DAAD).

alpha as the root sequence. The mutability vector is shown in th
form of a histogram above the alignment.
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