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Abstract
Motivation: We present a new probabilistic model of the
evolution of RNA-, DNA-, or protein-like sequences and a
software tool, Rose, that implements this model. Guided by
an evolutionary tree, a family of related sequences is created
from a common ancestor sequence by insertion, deletion and
substitution of characters. During this artificial evolutionary
process, the ‘true’ history is logged and the ‘correct’ multiple
sequence alignment is created simultaneously. The model
also allows for varying rates of mutation within the
sequences, making it possible to establish so-called se-
quence motifs.
Results: The data created by Rose are suitable for the
evaluation of methods in multiple sequence alignment
computation and the prediction of phylogenetic relation-
ships. It can also be useful when teaching courses in or
developing models of sequence evolution and in the study of
evolutionary processes.
Availability: Rose is available on the Bielefeld Bioinformat-
ics WebServer under the following URL: http://bibis-
erv.TechFak.Uni-Bielefeld.DE/rose/ The source code is
available upon request.
Contact: folker@TechFak.Uni-Bielefeld.DE

Introduction

It is useful, for many reasons, to have a family of sequences
with well-known evolutionary history. This kind of data is
used in the study of evolutionary processes, in the evaluation
of multiple sequence alignment methods, and in the recon-
struction of phylogenetic trees. Other applications in com-
putational molecular biology may also benefit from its avail-
ability. Unfortunately, nature does not provide ‘benchmark’
problems well suited for all these applications since there is no
way to learn the exact phylogeny of the sequences involved.
Therefore, it is common practice to create sequence data artifi-
cially, trying to be as close to the real world as possible.

The simulation of evolutionary processes at the molecular
sequence level has a long tradition. Starting with the model
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of Jukes and Cantor (1969), several generalizations and al-
terations have been presented (e.g. Kimura, 1980; Felsens-
tein, 1981; Hasegawa et al., 1985; Schöniger and von Hae-
seler, 1995). These models were designed for the study of
molecular evolution at the sequence level, focusing on a
well-founded statistical basis rather than on producing se-
quence families most similar to those usually considered in
molecular biology. The early models even ignored the well-
known fact of insertions and deletions (indels) during evol-
ution. Some models (Thorne et al., 1991, 1992) consider in-
dels, but still have some other restrictions.

To create most realistic sequence families, we have added
indels and ‘sequence motifs’ [patterns in a family of related
sequences (Wu and Brutlag, 1995)] to the so-called HKY
model (Hasegawa et al., 1985) which only allows the de-
scription of arbitrary rate substitutions in DNA sequences.
We also extended the underlying alphabet to cover amino
acid sequences. An evolutionary process is simulated by iter-
ated mutation of a ‘common ancestor sequence’ following
the edges of a given ‘mutation guide tree’. This way, the to-
pology of the tree induces the relationship of the sequences.
The mutations are performed by insertion, deletion and sub-
stitution of single characters or whole subsequences. Figure
1 sketches the creation process of a family of four sequences.
In addition to knowing the exact evolutionary distance of the
sequences, our approach provides us with their whole evol-
utionary history and the true alignment. Therefore, in con-
trast to biological applications, it is easily possible to verify
predictions about alignments and phylogenetic relationships
drawn from the sequences simply by comparing the pre-
dicted phylogeny to the tree that was used in the creation
process.

In fact, we can go one step further and evaluate the ad-
equacy of mathematical models such as maximum parsi-
mony or sum-of-pairs multiple alignment. Given a program
that calculates the best solution according to the model on a
data set generated by Rose, we may contrast these results to
the ‘true’ phylogeny or alignment.

The data created by our tool Rose (random model of se-
quence evolution) have been extensively tested with the Di-
vide-and-Conquer Alignment (Stoye, 1997; Stoye et al.,
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Fig. 1. Example of a creation process of four sequences from a
common ancestor ‘cgtat’. The underlined part denotes a sequence
motif with smaller substitution probability.

1997) and GeneFisher (Giegerich et al., 1996; Meyer and
Schleiermacher, 1996) software packages.

Systems and methods

For reasons of speed, efficiency and portability, Rose was
developed under UNIX using the ANSI C programming lan-
guage. The software has been tested on various UNIX plat-
forms e.g. DEC, HP, LINUX-PC, SGI, Sun. The actual pro-
gram development was carried out on a Sun Sparcstation
using gcc and Sun SPro C compilers, as well as bison and flex
to build the input parser. The publicly available version runs
on a Sun Enterprise 3000 server.

Algorithm

The model

Our procedure requires the following input:

(i) an alphabet A
of size l, e.g. the DNA alphabet {A, C, G, T} or the 20 char-
acter amino acid alphabet;

(ii) a root sequence s or an average sequence length n
(if no root sequence is specified, a random sequence of length
n ≥ 1 is generated);

(iii) character frequencies f = (f1, …, fl)

satisfying �
1

i�1

 fi  = 1 used for insertions and the creation of the

root sequence (if not specified);

(iv) a mutation guide tree T or a sequence distance dav
the tree may be supplied with edge lengths (otherwise all
edges are assumed to have uniform length 1), if no tree is
entered, a binary mutation guide tree of user-defined average
pairwise sequence distance dav (see the subsection on adjust-
ing the edge lengths) is created;

(v) a mutation matrix M
of size l × l representing pairwise mutation frequencies used
for substitutions;

(vi) insertion and deletion probability functions

representing the probability of an indel event pins or pdel,
combined with indel length functions lins and ldel, respective-
ly; and

(vii) a mutation probability vector v
of length n allowing one to specify regions of different muta-
tion rate, e.g. to specify sequence motifs.

Given these parameters, Rose generates
(i) a family of sequences s1, …, sm
containing sequences with average length n and average
pairwise evolutionary distance dav;

(ii) a multiple sequence alignment A
of the sequences s1, …, sm that is correct with respect to the
creation process, i.e. it reflects the ‘true’ evolutionary history
of s1, …, sm; and finally

(iii) a relatedness tree T′
showing the phylogenetic relationship of the created se-
quences. T′ is the smallest subtree of T which contains all the
nodes corresponding to the generated sequences (and poss-
ibly some additional inner nodes which can be seen as extinct
ancestors).

An outline of the algorithm is given here:
Rose(A, s, n, f, T, dav)
begin

if  undefined(s)

s := create_root_sequence(A, n, f);

fi
if  undefined(T)

T := create_guide_tree(dav) ;
fi
T.seq := s ; //copy root sequence to root of tree
traverse(T); //recursively mutate sequences along tree
print_sequences(T); //generate output
print_alignment(T);
print_tree(T);

end
where sub-function traverse is implemented as follows:
traverse(T)
foreach subtree T′ of T do

T′.seq := evolve(T.seq)
traverse(T′)

od
In the following subsections, we take a closer look at the

different steps of Rose.

The root sequence

The implementation of function create_root_sequence is
straightforward: if no pre-given root sequence is specified,
each of the n positions in the root sequence is independently
filled by a random process that returns letter Ai  (1≤ i ≤ l) with
probability fi .
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Fig. 2. Uniform binary tree of depth k = 4 with K = 25 – 1 = 31 nodes.
For a node in depth κ = 2 (marked by the circle), those nodes
contributing to Dκ and Uκ, respectively, are shown.

Rose works with arbitrary alphabets and any matching list
of frequencies. For amino acid sequences, we implemented
as default values the normalized frequencies of the amino
acids given in Dayhoff et al. (1979), and for nucleotides we
use the frequencies given in Agarwal and States (1996).

The mutation guide tree

The general behavior of create_guide_tree is similar to that
of create_root_sequence: if no tree T is specified, Rose com-
putes a uniform binary tree with k = 1023 nodes whose edge
labels are adjusted such that the average sequence distance
(i.e. the expected length of a shortest path between two ran-
domly chosen nodes in the tree) meets the user-defined value
dav (see below). After the tree is created, either only from the
leaves or from the leaves and inner nodes (chosen by the
user), the required number of sequences is selected uniform-
ly. So, in the latter case it can happen that, at the same time,
an inner node sequence and a sequence from the correspon-
ding subtree is chosen.

Obviously, it is possible to save space and computation
time by pruning the unnecessary edges in the tree before per-
forming the evolutionary process if not all of the sequences
are contained in the final sequence family.

Adjusting the edge lengths. Assume a binary uniform tree
of depth k with K = 2k + 1 – 1 nodes and constant length b of
every edge (see Figure 2). For the moment, let b = 1. Then,
the average sequence distance dav is the sum of all pairwise
distances in the tree divided by K (K – 1), the number of pairs
of distinct nodes. Consider, therefore, a node in level κ of the
uniform binary tree, 0≤ κ≤ k. In the example of Figure 2, we
have chosen κ = 2. The corresponding node is indicated by
a circle.

In each level i, 0≤ i ≤ k – κ of the subtree ‘below’ the ob-
served node, there are 2i nodes with distance i. The sum of
distances to all these nodes is:

D
�

:��
k–�

i�0

(2i � i)

� 2k–��1(k–�–1)� 2

Additionally, there are κ nodes ‘above’ the observed node,
each being the starting point of a subtree. Summing the dis-
tances to all these nodes gives:

U
�

:��
�

i�1

�i � �
k–(�–i)

j�1

2j–1 � (i � j)�
� 2k –��1(� – k� 3)
� 2k�1(�� k –3)� �

Thus, the total sum of distances from a node in level κ to
all other nodes is:

N
�

:� D
�
� U

�

� 2k–��2� 2k�1(�� k – 3)� �� 2

Averaging this value over all pairs of distinct nodes, we
obtain:

dav :�

�
k

��0

(2� � N
�
)

K(K–1)

� 2� 2k�1 4� k(1� 2k�1)–2k�2

(2k�1–1)(2k�1–2)

which approximates

2k� 2k�1� 2k�2

2k�1 � 2(k� 2)

for sufficiently large k.
Similarly, if all edges have length b, we get:

dav� 2b(k� 2)

Hence, to obtain sequences of a pre-given relatedness, we
simply have to alter the edge length b:

b�
dav

2(k� 2)

For example, to obtain sequences of an average distance
dav ≈ 250 PAM, the edge length of our default tree with 1023

= 29 + 1 – 1 nodes has to be set to b� 250
2(9� 2)

� 18.

Note that in the above calculation we assumed that the se-
quences are selected from both the internal nodes and the
leaves of the mutation guide tree. In case sequences are se-
lected only from the leaves, a similar calculation leads to the
formula:

b�
dav

2(k� 1)
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Creation of child sequences

We now take a closer look at the implementation of function
evolve, the core of Rose. The following steps are used to
create a new ‘descendant’ sequence snew from a given ances-
tor sequence sold:
evolve(sold)

1. The mutation function mutate for the given al-
phabet is applied to every position i in sold:

snew[i] = mutate(sold[i], b)

where b is the length of the branch leading to the new
node. The mutation matrix is selected with respect to b
as described below.

2. One or more subsequences are deleted from snew,
taking into account the deletion probability pdel and the
deletion length function ldel:

perform_deletions(pdel, ldel)

3. One or more sequences are inserted at arbitrary
positions in snew:

perform_insertions(pins, lins)

Function mutate makes use of the mutation probability ma-
trix M. An entry M[i,j] is interpreted as the probability for the
jth letter of the alphabet A being substituted by the ith letter.

Hence, the sum of each column of M should be �
l

i�1

 M[i,j] =

1 for all j = 1, …, l. The diagonal values M[i,i] determine the
degree of stability: for example, a value of M[i,i] = 0.99 for all
i = 1, …, l will result in an average mutability of 1% accepted
mutations per unit of branch length.

In case the mutation matrix M is the probability matrix of
one accepted amino acid substitution per hundred sites (1
PAM) given in Dayhoff et al. (1979), which is our default for
proteins, we denote this new unit of measure for the distance
of a child sequence from its ancestor including insertions and
deletions by 1 PAM* where the parameters for insertions and
deletions have to be specified additionally.

Evolutionary rates of more than 1 PAM* are obtained by
applying the creation procedure repeatedly. As Schöniger
and von Haeseler (1995) have shown, the use of a custom
matrix (such as PAM 10) helps to save time when the number
of substitutions exceeds an upper bound. At each step along
an edge of the guide tree, depending on the mutation rate, the
decision is made either to use pre-computed PAM* matrices
repeatedly or to compute a new custom matrix.

Sequence motifs

Up to this point, we have assumed a constant rate of mutation
over the whole length of the sequences. This is not very real-

istic: the mutation rate of genomic sequences found in nature
is not constant for all positions in the genome. Mutations in
regions with strong functional and/or structural importance
are less often observed than elsewhere.

Therefore, we have generalized the function evolve: we
allow the use of different rates of mutation for different re-
gions of the sequence by a vector v of length n with values
vi  ≥ 0 which linearly increase/decrease the degree of variabil-
ity at position i of the root sequence. A value vi  = 1 yields
exactly the variability given by the edge length. Values vi  <
1 suppress mutations (vi  = 0: no mutation) and higher values
vi  > 1 allow the specification of regions of particular high
mutation rate, e.g. so-called hot spots. The vector v is in-
herited by child sequences. Indels are forbidden in regions
with vi  < 1, thus establishing conserved sequence motifs. In-
serted regions have a variability of 1.

Creation of indels

It is obvious that the exact mechanism of insertion and dele-
tion is crucial for the simulation of evolution. Unfortunately,
there is neither a well-established model (like HKY for nu-
cleotide substitution) nor consensus as to the number of in-
dels that corresponds to a certain evolutionary distance. We
therefore chose to accommodate a wide range of possibilities
with a function that we call inverted gap function. The fol-
lowing pseudocode shows the selection and creation of in-
sertions; deletions are handled analogously (except for an
additional test if the mutation probability of all deleted char-
acters is ≥ 1).
perform_insertions(pins,lins)

begin
do T.dist times

if  random_number_between_zero_and_one() < pins
pos := choose_random_position(length(sold));
len := compute_insertion_length(lins);
if  vi  >= 1

do_insertion(pos, len);
fi

fi
od
end

The starting position for the insertion in choose_ran-
dom_position is selected uniformly among the positions 1,
…, length(sold). To allow a high degree of variability, Rose
accepts any quantized length function lins = l (1)

ins, ���, l
(qins)

ins
 with

�
qins

i�1

l (i)
ins = 1. Then, length len in (1, …, qins) is selected with

probability l (len)
ins .
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Function do_insertion finally is similar to the creation of
the root sequence; the characters inserted maintain the initial
character distribution.

Implementation

Input/output formats

The user input is via an HTML forms interface, the user can
also choose to feed a file with all the input information into
Rose using a simple tag value format. The format and the
parameters are further described in our online manual
http://bibiserv.TechFak.Uni-Bielefeld.DE/rose/manual.html.

Resource requirements

On a Sun Ultra I 167 MHz CPU, Rose used the following
resources:

Table 1. 

Protein DNA

# seqs s Mbyte # seqs s Mbyte

10 1.8 1.1 10 3.3 1.4

100 9.8 1.9 100 18.6 3.8

500 24.9 4.2 500 49.5 9.6

Here, the created protein sequences have an average length
of 250 letters and an average relatedness of 250 PAM*; the
DNA sequences have an average length of 1000 letters and
an average relatedness of 50.

Examples

The following examples show some of the features and dem-
onstrate the versatility of Rose.

A protein sequence family. In Figure 3a, a sample family
with m = 4 sequences of average length n = 50 is shown. This
family is created with the default settings of Rose: a uniform
binary mutation guide tree of depth k = 9 and uniform edge
length b = 18 PAM*. The probability for insertions and dele-
tions is set to pins = pdel = 0.3%, and the insertion and deletion
length functions are exponentially decreasing with a maxi-
mal length value of 10.

The alignment given in Figure 3b is the ‘true’ alignment
corresponding to the creation process of the sequences. Fig-
ure 3c shows an optimal alignment according to the PAM
250 substitution matrix (Dayhoff et al., 1979) (in distance
form with values between 0 and 24) and gap function g(l) =
8 + 12l computed with the program MSA (Lipman et al.,
1989; Gupta et al., 1995). While the overall optimal align-
ment is correct, the exact location of the gaps does not co-
incide in all cases. This suboptimality of true alignments re-
garding the standard alignment score functions is also shown

Fig. 3. (a) Sample family of random sequences obtained with Rose
for n = 50 and m = 4. (b) ‘True’ alignment of these sequences. (c) A
score-optimal alignment according to PAM 250 substitution matrix
and gap function g(l) = 8 + 12l computed with the program MSA.
While the overall optimal alignment is correct, the exact location of
the gaps does not coincide in all cases.

Fig. 4. DNA example with TATAAT motif: (a) the ‘true’ and (b) an
optimal alignment.

by the (distance) scores for both alignments: the ‘true’ align-
ment has an alignment score of 5184, while the optimal
alignment has a ‘better’ score of 5166.

A simple DNA sequence family with motif. The use of mo-
tifs in sequence families created by Rose is demonstrated in
Figure 4. The upper part shows the ‘true’ alignment of a fam-
ily of five DNA sequences which contains a conserved TA-
TAAT motif obtained with Rose using a mutation vector dis-
allowing mutations within the motif, while outside the muta-
bility remains normal. Figure 4b shows a score-optimal
alignment of these sequences computed with MSA [unit sub-
stitution cost with gap function g(l) = 2 + l]. It is considerably
shorter than the ‘true’ alignment. The parsimony objective
underlying the sum-of-pairs scoring of MSA fails here.

A protein sequence family with varying mutation rate. Fi-
nally, we present a protein example where we fixed the root
sequence and the mutation guide tree. We also varied the mu-
tability along the sequence.

As root sequence, we took the human hemoglobin alpha
sequence. The mutation guide tree is shown in Figure 5. The
true alignment of our ‘artificial globins’ is shown in Figure
6. The histogram above the alignment shows the mutation
probability along the sequence allowing a higher mutation
rate between the α helices than within.
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Fig. 5. Relatedness tree for the sequences shown in Figure 6.

Fig. 6. Family of ‘globins’ created by using human hemoglobin
alpha as the root sequence. The mutability vector is shown in the
form of a histogram above the alignment.

Discussion and conclusion

The data sets created by Rose are artificial sequence families
that contain both indels and motifs. The evaluation of mul-
tiple sequence alignment tools and phylogenetic reconstruc-
tion tools is possible with these benchmarks.

Previous models were mainly designed to understand
evolutionary processes better rather than create nature-like
sequence families. While such studies need a rigorous proba-
bilistic foundation, they are quite far from a realistic simula-
tion of the biological truth. Even the most sophisticated
model (Thorne et al., 1992) including indels of complete
blocks cannot describe overlapping insertions and deletions
as two evolutionary events since fragments cannot vary over
time. Our ‘fragments’ (i.e. inserted or deleted regions) can
vary over time and hence overlap. Our model is based on
empirically verified parameters. It is not a priori clear by
which parameters the most natural results can be obtained
and there does not seem to exist a single set of evolutionary
parameters describing the whole variety one finds in nature.
Therefore, with Rose, the user is free to set whatever para-
meters seem reasonable for the actual purpose.

While we have removed a number of limits that existed so
far, there are still some limitations: while we do not assume
that the characters of the sequences evolve independently

and with the same rate in the whole family, we have not yet
included a feature that simulates different rates of evolution-
ary pressure in different branches of the tree, enabling differ-
ent lineages to evolve independently within our tree. This has
been observed by a number of biologists (Greer, 1981, 1990;
Schulz et al., 1986; Benner et al., 1994). While we are plan-
ning to include this feature in a future release of Rose and
extend the scope of our model even further, it is important to
note that all results have to regard the adequacy of the chosen
evolutionary parameters, and that simulations can only aid
the evaluation of algorithms. What matters in the end is the
success on real biological sequences.
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