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Abstract. A non-Archimedean utility representation theorem for in-
dependendent and transitive preference orderings that are partially con-
tinuous on some convex subset and satisfy an axiom of incommensurable
preference for elements outside that subset is proven. For complete
preference orderings, the theorem is deduced directly from the classical
von Neumann-Morgenstern theorem; in the absence of completeness,
Aumann’s (1962) generalization is utilized.

1. Introduction

Non-Archimedean utility representations are representations of prefer-
ence orderings by means of utility functions whose range is a lexicographi-
cally ordered vector space or a non-Archimedean real-ordered field (e.g. an
ultrapower of the reals with respect to a non-principal ultrafilter). Such rep-
resentations have been studied in remarkable generality, through the theory
of mixture spaces, for half a century. Initiated by Hausner [4] and Thrall
[11], the field has seen notable contributions by Fishburn [2], Skala [9, 10],
Fishburn and Lavalle [3], Kannai [6], and, more recently, Lehmann [7], to
mention but a few.

It seems that no attempt has been undertaken so far to arrive at non-
Archimedean utility functions in a more direct manner, viz. by invoking
the classical von Neumann-Morgenstern theorem [12] — or, in the absence
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of completeness, Aumann’s generalization1 [1] — for the convex subspace
of finite-utility lotteries and introducing an incommensurability axiom for
infinite values.2 The present short note fills this gap.

2. Main result

Consider a subset B of a real vector space, and let X be its convex hull.
Suppose � is a binary relation ⊆ X ×X. For any x, y ∈ X, we shall write
x ≺ y whenever x � y but y 6� x, and x ∼ y whenever both x � y and
y � x.

Let n ∈ N and suppose that there are x1, . . . , xn ∈ B such that xk ≺ xk+1

for all k < n. For every k ≤ n, we define

Bk := B \ {xk+1, . . . , xn},
and denote the convex hull of Bk by Xk. For any x ∈ X and X ′ ⊆ X, we
say that x is incommensurably preferable to X ′ if and only if

∀y, z ∈ X ′ ∀q ∈ (0, 1] y ≺ qx+ (1− q)z.
Let V be the real vector space Rn+1, and let < be the strict lexicograph-

ical linear ordering of V . The unit vectors of the canonical basis of V are
denoted e0, . . . , en.

A utility representation function for � is an affine map U : X → V such
that for all x, y ∈ X,

• if x ≺ y then U(x) < U(y), and
• if x ∼ y then U(x) = U(y).

Theorem 1. Suppose � satisfies all of the following axioms:
• Reflexivity. For all x ∈ X, x � x.
• Transitivity. For all x, y, z ∈ X, if x � y and y � z, then x � z.
• Independence. For all x, y, z ∈ X and p ∈ (0, 1],

x � y ⇔ px+ (1− p)z � py + (1− p)z.
• Partial Continuity.3 For all x, y, z ∈ X0 with y ≺ z, there exists
some p ∈ (0, 1) such that

z 6≺ px+ (1− p)y.
• Incommensurability of Infinite Values. For every k ∈
{1, . . . , n}, the outcome xk is incommensurably preferable to Bk−1.

Then there exists a utility representation function for �.

The proof uses Aumann’s generalization of the von Neumann-
Morgenstern theorem for a partial ordering on a mixture spaces, in the
formulation of Aumann [1]. A closely related result, which can be proven

1The referee suggested the use of Aumann’s result [1] in order to remove the assump-
tion of completeness. The original submission did not contain Theorem 1.

2From a historical vantage point, this is rather surprising, since von Neumann and
Morgenstern [12] themselves recognized the possibility of non-Archimedean utility func-
tions (cf. Skala [10] for a discussion of this point). As the referee pointed out, von Neu-
mann and Morgenstern actually anticipated that in the absence of the completeness axiom,
one obtains “a many-dimensional concept of utility” [12, 3.7.2].

3This formulation of continuity on X0 follows Aumann [1, p. 449, formula (1.2)].
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either directly from the von Neumann-Morgenstern theorem or as a corollary
of Theorem 1, is the following:

Theorem 2. There exists some affine function U : X → V such that

(1) ∀x, y ∈ X x � y ⇔ U(x) ≤ U(y), ∀k ≤ n U (xk) = ek

if and only if � satisfies all of the following axioms:
• Completeness. For all x, y ∈ X, either x � y or y � x or both.
• Transitivity. For all x, y, z ∈ X, if x � y and y � z, then x � z.
• Independence. For all x, y, z ∈ X and p ∈ (0, 1],

x � y ⇔ px+ (1− p)z � py + (1− p)z.
• Partial Continuity. For all x, y, z ∈ X0 with x ≺ y ≺ z, there
exist p, q ∈ (0, 1) such that

px+ (1− p)z ≺ y ≺ qx+ (1− q)z.
• Incommensurability of Infinite Values. For every k ∈
{1, . . . , n}, the outcome xk is incommensurably preferable to Bk−1.

We have chosen the framework of mixture spaces in this paper be-
cause this seems to be the most popular setting for applications of non-
Archimedean utility theory in fields such as philosophical decision theory.
As an alternative approach, one could assume that X is itself a real vec-
tor space, rather than merely a convex subset thereof. In this framework,
it would be more natural to employ the theory developed by Kannai [5],
which also extends to infinite dimensions, rather than Aumann’s findings
[1]. Choosing this route would, in particular, lead to new versions of The-
orems 1 and 2 where X may be chosen as V = Rn+1 and even the identity
map on V could be an admissible choice of U .

As a corollary to Theorem 2, we also obtain a utility representation
of � in a non-Archimedean field whenever � satisfies the axioms listed in
Theorem 2. In the following, ∗R is the non-Archimedean field of hyperreals
(in the sense of Robinsonian nonstandard analysis [8]),4 and I denotes an
arbitrary, but fixed positive infinite hyperreal (i.e. I > n for all n ∈ N).

Corollary 3. There exists some affine function u : X → ∗R such that

(2) ∀x, y ∈ X x � y ⇔ u(x) ≤ u(y), ∀k ≤ n u (xk) = Ik

if and only if � satisfies the axioms of completeness, transitivity, indepen-
dence, partial continuity, and incommensurability of infinite values.

The interpretation of the incommensurability of infinite values is straight-
forward: For every level k ≤ n, the slightest positive chance of winning the
lottery with pure outcome xk is still preferable to any lottery with pure
outcome from Bk−1 — and, in fact, to any lottery from Xk−1 (see Lemma
5).

This means first of all that x1, . . . , xn are incommensurably preferable to
X0. But onX0, the relation� has a real-valued (von Neumann-Morgenstern)
utility representation X0 (by its continuity on X0). Therefore, x1, . . . , xn
must be infinite-utility outcomes. In addition, the incommensurability of

4∗R is the ultrapower of R with respect to some non-principal ultrafilter.
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infinite values asserts that there is a strict hierarchy of incommensurable
preference among these outcomes.

For examples and applications, we refer to Thrall [11] and only mention
that military strategic choices often involve such decisions: Nearly everything
should be risked for winning a war, and all supplies should be risked for
conserving manpower.

Possible applications might also include economic reasoning in law when
legal norms of varying importance are at stake.

From a historical perspective, the prime example would be Pascal’s wa-
ger: Pascal’s wagerer has to choose between searching after the Christian
God, which with positive probability leads to salvation and hence infinite
utility (in case the Christian God exists and the wagerer ends up wagering
for Him) or faith in atheism.

3. Proof

The proofs of Theorems 1 and 2 utilize the following Lemma:

Lemma 4. Suppose � is transitive and independent, and let k ∈
{1, . . . , n}. If xk is incommensurably preferable to Bk−1, then

∀y, z ∈ Xk−1 ∀p < q ∈ [0, 1] pxk + (1− p)y ≺ qxk + (1− q)z.

The proof of Lemma 4, in turn, requires another result:

Lemma 5. Suppose � is transitive and independent, and let k ∈
{1, . . . , n}. If xk is incommensurably preferable to Bk−1, then also to Xk−1.

In the proof of the Lemmas and the Theorem, we will use that

∀x, y, z ∈ X ∀p ∈ (0, 1] x ≺ y ⇔ px+ (1− p)z ≺ py + (1− p)z
(which is a consequence of �’s independence in general and even equivalent
to independence for complete �).

Proof of Lemma 5. Define

Zk−1 := {z ∈ Xk−1 : ∀y ∈ Xk−1 ∀q ∈ (0, 1] y ≺ qxk + (1− q)z} .
First we shall prove that Bk−1 ⊆ Zk−1. Consider any z ∈ Bk−1. Let

q ∈ (0, 1], and define

Y := {y ∈ Xk−1 : y ≺ qxk + (1− q)z} .
Note that Y is convex: For every y, y′ ∈ Y and p ∈ (0, 1), independence

yields

py + (1− p) y′ ≺ p (qxk + (1− q)z) + (1− p)y′

≺ p (qxk + (1− q)z) + (1− p) (qxk + (1− q)z) = qxk + (1− q)z,
hence by transitivity, py+ (1− p)y′ ≺ qxk + (1− q)z, so py+ (1− p)y′ ∈ Y .

On the other hand, Bk−1 ⊆ Y by assumption, so Xk−1, the convex hull
of Bk−1, must also be ⊆ Y . Therefore, y ≺ qxk + (1− q) z for all y ∈ Xk−1.
Since q ∈ (0, 1] was arbitrary, we even get that

∀y ∈ Xk−1 ∀q ∈ (0, 1] y ≺ qxk + (1− q)z,
whence already z ∈ Zk−1. Therefore Bk−1 ⊆ Zk−1, as claimed.
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Next we prove that Zk−1 is convex. Consider any w, z ∈ Zk−1 and
p ∈ (0, 1). We shall prove that pw + (1− p)z ∈ Zk−1. For all y ∈ Xk−1 and
q ∈ (0, 1], independence gives us

y = py + (1− p)y ≺ py + (1− p) (qxk + (1− q)z)
≺ p (qxk + (1− q)w) + (1− p) (qxk + (1− q)z)
= qxk + p(1− q)w + (1− p)(1− q)z = qxk + (1− q) (pw + (1− p)z) .

By transitivity, we obtain

∀y ∈ Xk−1 ∀q ∈ (0, 1] y ≺ qxk + (1− q) (pw + (1− p)z) ,

in other words: pw+(1−p)z ∈ Zk−1. Therefore, Zk−1 is convex, as claimed.
But Bk−1 ⊆ Zk−1, as was shown in the first part of this proof. Therefore,

the set Xk−1, the convex hull of Bk−1, must also be ⊆ Zk−1. (In fact,
Xk−1 = Zk−1.) Thus,

∀z ∈ Xk−1 ∀q ∈ (0, 1] ∀y ∈ Xk−1 y ≺ qxk + (1− q)z.

�

Proof of Lemma 4. Let y, z ∈ Xk−1 and p < q ∈ [0, 1]. We need to
prove that pxk + (1− p) y ≺ qxk + (1− q) z = pxk + (q − p)xk + (1− q) z,
which is, by independence, equivalent to y ≺ q−p

1−pxk +
1−q
1−pz. This last asser-

tion, however, is true by Lemma 5. �

In particular, the formula in Lemma 4 is valid for all k ∈ {1, . . . , n} if �
satisfies the conditions in Theorem 1.

Proof of Theorem 1. Assume that � satisfies the axioms listed in
the Theorem. Recursively in k, we shall construct an affine function Uk :
Xk → Rk+1 by

(3) ∀p ∈ [0, 1] ∀y ∈ Xk−1 Uk (pxk + (1− p)y) = 〈p, (1− p)Uk−1(y)〉 .

U0 is chosen as Aumann’s utility representation [1, Theorem A] of the re-
striction of � to X0 (here we use the reflexivity and continuity of � on
X0).

Through a simultaneous induction in k, we shall prove that for all k ∈
{1, . . . , n},

(4) Uk is well-defined

and

(5) ∀p ∈ [0, 1) ∀y, z ∈ Xk−1

(
pxk + (1− p)y ≺ pxk + (1− p)z

⇒ Uk−1(y) < Uk−1(z)

)
,

wherein < denotes the lexicographical ordering on Rk.
For the rest of the proof, it will be helpful to recall that

(6) ∀p < q ∈ [0, 1] ∀y, z ∈ Xk−1 pxk + (1− p)y ≺ qxk + (1− q)z,

which is just a consequence of Lemma 4 (since � satisfies the axiom of
incommensurability of infinite values). Furthermore, because of recursion
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formula (3) (combined with the fact that < is the lexicographical ordering
on Rk), one can summarize formulae (6) and (5) as follows:

∀p, q ∈ [0, 1] ∀y, z ∈ Xk−1

(
pxk + (1− p)y ≺ qxk + (1− q)z

⇒ Uk (pxk + (1− p)y) < Uk (qxk + (1− q)z)

)
,

in other words,

(7) ∀x, y ∈ Xk (x ≺ y ⇒ Uk(x) < Uk(y)) .

Let us now present the details of the inductive proof for assertions (5)
and (4).

Base step for assertion (5). Suppose that px1 + (1− p) y ≺ px1 +
(1− p) z. The independence of � means that

px1+(1− p) y � px1+(1− p) z ⇔ y � z, px1+(1− p) z 6� px1+(1− p) y ⇔ z 6� y,

whence
px1 + (1− p) y ≺ px1 + (1− p) z ⇔ y ≺ z.

Thus, y ≺ z. Recalling that U0 was chosen as Aumann’s utility representa-
tion of � on X0, it follows that U0(y) < U0(z).

Base step for assertion (4). Consider two elements ξ = px1+(1−p)y and
ξ′ = qx1 +(1− q)z of X1, wherein y, z ∈ X0, and suppose that ξ = ξ′. Then
p = q, because otherwise formula (6) would yield that either ξ ≺ ξ′ (in case
p < q) or ξ′ ≺ ξ (in case q < p), both of which contradicts ξ = ξ′ since � is
reflexive. However, from p = q and px1+(1− p)y = ξ = ξ′ = qx1+(1− q)z,
we may deduce that either p = q = 1 or y = z (or both). In either case, both
(1− p)U0(y) = (1− q)U0(z) and p = q, and therefore finally U1(ξ) = U1(ξ

′)
by the recursive definition of U1 in Equation (3).

Simultaneous induction step for assertions (5) and (4). Suppose that
assertions (5) and (4) hold for k − 1 instead of k.

• Proof of assertion (5) from the induction hypothesis. As in the base
step for assertion (5), the independence of � yields that

pxk + (1− p) y ≺ pxk + (1− p) z ⇔ y ≺ z.

On the other hand, the induction hypothesis implies assertion (5)
for k−1 instead of k and therefore also formula (7) for k−1 instead
of k. Combining this, we get

pxk + (1− p) y ≺ pxk + (1− p) z ⇒ Uk−1(y) < Uk−1(z).

Note that p < 1, because otherwise the antecedens in the previ-
ous implication means xk ≺ xk, contradicting the reflexivity of �.
Therefore, we finally obtain

pxk+(1− p) y ≺ pxk+(1− p) z ⇒ 〈p, (1− p)Uk−1(y)〉︸ ︷︷ ︸
=Uk(pxk+(1−p)y)

< 〈p, (1− p)Uk−1(z)〉︸ ︷︷ ︸
=Uk(pxk+(1−p)z)

.

• Proof of assertion (4) from the induction hypothesis. The reason-
ing is analogous to the base step for assertion (4): Consider two
elements ξ = pxk + (1 − p)y and ξ′ = qxk + (1 − q)z of Xk,
wherein y, z ∈ Xk−1, and suppose that ξ = ξ′. Then p = q,
because otherwise formula (6) would yield that either ξ ≺ ξ′ (in
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case p < q) or ξ′ ≺ ξ (in case q < p), both of which contra-
dicts ξ = ξ′ since � is reflexive. However, from p = q and
pxk + (1 − p)y = ξ = ξ′ = qxk + (1 − q)z, we may deduce
that either p = q = 1 or y = z (or both). In either case, both
(1 − p)Uk−1(y) = (1 − q)Uk−1(z) and p = q, and therefore finally
Uk(ξ) = Uk(ξ

′) by the recursive definition of Uk in Equation (3).
Hence, we have completed the inductive proof of assertions (5) and (4)

for all k ∈ {1, . . . , n} and as a consequence also obtain formula (7) for all k.
Finally, we shall prove, again by an inductive argument in k, that

(8) ∀x, y ∈ Xk (x ∼ y ⇒ Uk(x) = Uk(y))

holds for all k ∈ {1, . . . , n}. Consider two elements ξ = pxk + (1 − p)y and
ξ′ = qxk + (1− q)z of Xk. Formula (6) implies that

pxk + (1− p)y ∼ qxk + (1− q)z ⇔ p = q,

hence by the independence axiom

pxk + (1− p)y ∼ qxk + (1− q)z ⇔ pxk + (1− p)y ∼ pxk + (1− p)z ⇔ y ∼ z.
However, y ∼ z implies Uk−1(y) = Uk−1(z) (by induction hypothesis in case
k > 1, and by the choice of U0 as Aumann’s utility representation function
in case k = 1), hence

pxk + (1− p)y ∼ qxk + (1− q)z ⇒ (Uk−1(y) = Uk−1(z), p = q) .

Using the recursive definition of Uk in Equation (3), this can be expressed
as

pxk+(1−p)y ∼ qxk+(1− q)z ⇒ 〈p, (1− p)Uk−1(y)〉︸ ︷︷ ︸
=Uk(pxk+(1−p)y)

= 〈q, (1− q)Uk−1(z)〉︸ ︷︷ ︸
=Uk(qxk+(1−q)z)

.

Therefore,
ξ ∼ ξ′ ⇒ Uk(ξ) = Uk(ξ

′)

for all ξ, ξ′ ∈ Uk. This completes the proof of assertion (8).
Combinining assertions (8) and (7) for k = n, we arrive at

(9) ∀x, y ∈ Xn (x ≺ y ⇒ Un(x) < Un(y), x ∼ y ⇒ Un(x) = Un(y)) .

Moreover, Bn = B and hence Xn = X. Also, a simple induction shows
that Un : X → V is affine. Hence Un is a utility representation function for
�. �

Proof of Theorem 2. Clearly, if there exists such a function as in
Equation (1), then � must have the properties listed in the Theorem.

The proof of the converse implication is identical to the proof of Theo-
rem 1, except that the classical von Neumann-Morgenstern theorem is used
instead of Aumann’s result [1]. �

Proof of Corollary 3. Again it is clear that any relation � with a
utility representation as in formula (2) will have the properties listed in the
Corollary.

The utility representation formula (2), however, follows from Theorem 2:
For, there exists a canonical linear order-preserving embedding ι : V → ∗R
of V into the hyperreals, defined through ι (ek) := Ik for all k ≤ n. Thus, if
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we define u := ι ◦ U , then not only u (xk) = ι (U (xk)) = ι (ek) = Ik for all
k ≤ n, but also
∀x, y ∈ X x � y ⇔ U(x) ≤ U(y)⇔ ι (U(x)) ≤ ι (U(y))⇔ u(x) ≤ u(y).

�
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