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Abstract
Background: Metagenomics, or the sequencing and analysis of collective genomes (metagenomes) of
microorganisms isolated from an environment, promises direct access to the "unculturable majority". This
emerging field offers the potential to lay solid basis on our understanding of the entire living world.
However, the taxonomic classification is an essential task in the analysis of metagenomics data sets that it
is still far from being solved. We present a novel strategy to predict the taxonomic origin of environmental
genomic fragments. The proposed classifier combines the idea of the k-nearest neighbor with strategies
from kernel-based learning.

Results: Our novel strategy was extensively evaluated using the leave-one-out cross validation strategy
on fragments of variable length (800 bp – 50 Kbp) from 373 completely sequenced genomes. TACOA is
able to classify genomic fragments of length 800 bp and 1 Kbp with high accuracy until rank class. For longer
fragments ≥ 3 Kbp accurate predictions are made at even deeper taxonomic ranks (order and genus).
Remarkably, TACOA also produces reliable results when the taxonomic origin of a fragment is not
represented in the reference set, thus classifying such fragments to its known broader taxonomic class or
simply as "unknown". We compared the classification accuracy of TACOA with the latest intrinsic
classifier PhyloPythia using 63 recently published complete genomes. For fragments of length 800 bp and
1 Kbp the overall accuracy of TACOA is higher than that obtained by PhyloPythia at all taxonomic ranks.
For all fragment lengths, both methods achieved comparable high specificity results up to rank class and
low false negative rates are also obtained.

Conclusion: An accurate multi-class taxonomic classifier was developed for environmental genomic
fragments. TACOA can predict with high reliability the taxonomic origin of genomic fragments as short as
800 bp. The proposed method is transparent, fast, accurate and the reference set can be easily updated as
newly sequenced genomes become available. Moreover, the method demonstrated to be competitive
when compared to the most current classifier PhyloPythia and has the advantage that it can be locally
installed and the reference set can be kept up-to-date.
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Background
Metagenomics, or the direct sequencing of collective
genomes is paving the road to a better understanding of
our ecosystems and the impact of microbes on human
health. Researchers are now changing the genome-centric
approach, which focussed on isolation, cultivation and
sequencing of single species at a time by sequencing com-
plete DNA samples from an environment, thus bypassing
the isolation and cultivation step. At present, most
metagenomes are sequenced using the whole genome
shotgun approach [1]. When used in combination with
the Sanger technique [2,3], a collection of short sequence
reads with average length of 800 bp is generated [4].
Recovery of DNA fragments of several thousand base pairs
is also possible using bacterial artificial chromosomes
(BACs) [5]. Longer DNA fragments can be also obtained
when short overlapping reads are assembled into larger
DNA stretches referred to as contigs.

An essential task addressed in the metagenomic data anal-
ysis workflow is to predict the source organism or taxo-
nomic origin of each read or assembled contig. This process
is called taxonomic classification or binning. Predicting
the taxonomic origin of reads or contigs can aid in linking
gene functions to members of the community or to recon-
struct the microbial composition of the studied sample.
The knowledge of the taxonomic composition of a sample
can be used to derive valuable ecological parameters at the
community level (e.g. richness and evenness) [6,7] or at
the population level (e.g. effective genome size) [8].

Two types of methods are used for the taxonomic classifi-
cation of environmental fragments: Composition-based
and similarity-based-methods. Similarity-based-methods
depend on a sequence-comparison with a reference set of
genomic sequences. Similarity-based methods directly
align metagenomic sequences to a reference set, e.g. using
BLAST [9]. Composition-based methods rely on charac-
teristics that can be extracted directly from the nucleotide
sequences (e.g. oligonucleotide frequencies, GC-content,
etc.). Recently, methods employing sequence-composi-
tion-based features are gaining popularity [10-13]. In par-
ticular, oligonucleotide frequencies have frequently been
used because they carry a phylogenetic signal [14,15]. Kar-
lin et al. [14] showed that significant deviations in terms
of di-nucleotide or tetra-nucleotide frequencies were less
significant within a genome than between genomes of dif-
ferent species.

From a machine learning point of view composition- and
similarity-based methods can be further divided into
supervised and unsupervised apporaches. In the context
of this work, supervised methods require a reference set of
genomic sequences with known taxonomic origin. Super-
vised composition-based methods use the reference set to

learn sequence characteristics of each taxonomic class dur-
ing a training phase. Subsequently, the trained classifier is
used to identify the taxonomic class of fragments of
unknown origin. For example methods such as a Bayesian
classifier [16] and PhyloPythia [12] fall into the super-
vised composition-based category. Although MEGAN
[17] and CARMA [6] do not have a training phase, these
similarity based classifiers are supervised since they rely
on the alignment of the genomic fragments to reference
sequences with known taxonomic origin.

The recently published CARMA software [6] has been
developed to taxonomically classify short reads (80 bp –
400 bp) derived by the Pyrosequencing technique (454 –
Life Sciences) [18]. CARMA showed to be very accurate on
taxonomically classifying reads that carry a complete or
partial protein family contained in the Pfam database
[19]. CARMA has the advantage of giving very accurate
predictions but it is computationally expensive. MEGAN
[17] performs well in classifying genomic fragments if
closely related reference genomes are available, which
may not be always the case for organisms contained in an
environmental sample. In general, sequence similarity
based classifiers, such as CARMA and MEGAN, have the
disadvantage of being able to predict the taxonomic class
for only those fragments carrying a partial gene or a pro-
tein domain. Compared to MEGAN and CARMA, our pro-
posed strategy has the advantage of being easy to maintain
and the complete strategy can be run on a desktop com-
puter in a reasonable time frame without preprocessing
steps. PhyloPythia, a supervised composition-based
method, uses over-represented oligonucleotide patterns
as features to train a hierarchical collection of Support
Vector Machines (SVMs), which is subsequently used to
predict the taxonomic origin of genomic fragments as
short as 1 Kbp [12]. Support Vector Machines demon-
strated to achieve a high classification accuracy for frag-
ments of length ≥ 3 Kbp and moderate accuracy for 1 Kbp
long fragments. However, the complete classifier needs to
be retrained (a computationally expensive procedure)
when newly sequenced genomes are added to the training
set.

Unsupervised learning approaches do not depend on ref-
erence sequences for classification, instead characteristics
are directly learned from the same data set that is being
analyzed. In the context of metagenomics, unsupervised
learning methods are used to group genomic sequences
such that all sequences originating from the same taxon
are grouped into one cluster. Notably, this grouping can
be done on different taxonomic ranks, ranging from
superkingdom to species. Unsupervised methods are for
example employed as a pre-processing step for assembly
or to study the community composition of samples. Addi-
tionally, marker sequences of known taxonomic origin
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can be used to infer the taxonomic origin of each gener-
ated cluster. However, in this case the marker sequences
are not involved in the classification process per se [13].

Several unsupervised methods have been developed for
the analysis of metagenomic data, the pioneering TETRA
[20,21] used tetranucleotide-derived z-score correlations
to taxonomically classify genomic fragments from
metagenome libraries of low diversity. Abe et al. [10,11],
in a following work, showed the feasibility to classify envi-
ronmental genomic fragments with minimal length of 5
Kbp using a self-organizing map (SOM). More recently,
Chan et al. developed a seeded growing self-organizing
map (S-GSOM) [13] to cluster metagenomic sequences.

Currently, completely sequenced genomes, which could
be used as a reference for the taxonomic classification of
metagenomic sequences, become available at an expo-
nential rate. Therefore, the taxonomic classification of
metagenomic data will greatly benefit from supervised
methods that can be instantaneously updated when new
genomes become available. Herein, we present a TAxo-
nomic COmposition Analysis method (TACOA) able to
predict the taxonomic origin of environmental genomic
fragments of variable length in a supervised manner.
TACOA can be easily installed and run on a desktop com-
puter offering more independence in the analysis of
metagenomic data sets. Furthermore, the reference set
used by the proposed classifier can easily be updated with
newly sequenced genomes.

TACOA applies the intuitive idea of the k-nearest neigh-
bor (k-NN) approach [22] and combines it with a
smoother kernel function [23,24]. Compared to other less
intuitive and more complex approaches, k-NN based
methods have proven to yield competitive results in a
large number of classification problems [25-28]. In parti-
cluar, if the classification problem has a multi-class
nature. The kernelized k-NN approach used in TACOA
allows to realize an accurate multi-class classifier. In gen-
eral, k-NN is intuitive, does not make any assumptions
about the distribution of the input data and the reference
set can be easily updated. For a wide range of practical
applications it approximates the optimal classifier if the
reference set is large enough. A further advantage is that
the classification results can be easily interpreted. How-
ever, the traditional k-NN algorithm runs into problems
when dealing with high dimensional input data (called
curse of dimensionality) [23]. In our extension of k-NN,
the introduction of a Gaussian kernel helps to alleviate
this problem. [23]. By using a smoother kernel function
the complete reference set is considered during the classi-
fication procedure instead of a strict neighborhood. We
present our kernelized k-NN approach as an alternative to
solve the problem of taxonomically classifying environ-
mental genomic fragments.

Results
The idea behind our approach is to exploit the benefits of
the case-based-reasoning k-NN algorithm, which classifies
vectors (i.e. Genomic Feature Vectors, GFVs) on the basis
of the class labels observed for vectors in its neighborhood
while keeping the advantage to approximate to the opti-
mal classifier if the training set is large enough. In partic-
ular, we used a smoother kernel function with Gaussian
density to profit from its implicit weighting scheme, thus
allowing more flexibility on setting the neighborhood
width and in handling high-dimensional input data. The
weights given by a smoother kernel function decrease as
the Euclidean distance between the classified GFV and the
reference vector increases. The rate at which the weights
decreases is controlled by the neighborhood width  [23].

Algorithm
In this study, a genomic fragment is defined as a DNA
sequence of a given length (note, that a completely
sequenced genome can be regarded as a genomic frag-
ment). The total number of oligonucleotides of length l,
from the alphabet ∑ = {a, t, c, g} is given by 4l. Each
genomic fragment is represented as a vector (i.e. GFV)
using the Vector Space Model [29]. For each of the possi-
ble four oligonucleotides in a sequence, the vector stores
the ratio between the observed frequency of that oligonu-
cleotide to the expected frequency given the GC-content
of that genomic fragment.

In order to predict the taxonomic origin of a query GFV,
TACOA compares that query GFV to the reference GFVs.
In our method, the reference GFVs are computed from all
373 completely sequenced reference genomes. In the fol-
lowing, the set of all computed reference GFVs is named
as reference set (refset). In this study a reference set consist-
ing of 373 genomes was used, i.e. T = 373 in this case.

More formally, let refset = {xj } with 1 ≤ j ≤ T be the set of
reference GFVs, where each xj represents a GFV computed
from a completely sequenced reference genome. Let x be
a query GFV representing a genomic fragment to classify.
The multi-class classification problem addressed herein,
resides in deciding to which of all different taxonomic
classes, at rank r, x belongs to.

For each taxonomic rank r out of superkingdom, phylum,
class, order and genus and for each taxonomic class i at
that rank, the algorithm computes a discriminant func-
tion i(x), and then classifies x into that class with the
highest value for its discriminant function.

More precisely, for a given taxonomic rank r, let i be that
class with the highest discriminant function i(x). Then, x
is classified into class i if i(x) is at least half as large as the
value of the second highest discriminant function on rank
r, otherwise x is classified as "unclassified". This optimal
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cut-off value for the discrimination function at each taxo-
nomic rank r was identified in a grid search. The discrimi-
nant function for a taxonomic class i is computed by:

where refi = {xj|xj ∈ refset and xj stems from class i} is the
set of all reference GFVs from class i. The smoother kernel
K (x, xj) is based on the Gaussian density function that
exponentially decreases with Euclidian distance from x:

where dw(x, xj) is a weighted distance function as defined
later in Equation (4) and  controls the neighborhood
width around x in the kernel function. Small values of 
result in decision boundaries with higher variance that
well-fit the reference set while large values achieve smooth
and stable decision boundaries that avoid overfitting and
are more robust [23].

In order to estimate how much a query GFV x differs from
a reference GFV the distance between the two vectors is
determined. By normalizing each vector to unit length dif-
ferences in genomic vector lengths are corrected. The dis-
tance d between a query GFV x and each reference GFV xj

is computed using the dot-product between the normal-

ized query GFV  and the normalized reference GFV :

The distance d was weighted in order to account for the
imbalanced reference set used in this study, where major-
ity classes and minority classes are present, e.g. the bacte-
ria group is over-represented compared to the archaea in
a proportion of 10:1.

The weighted distance function is denoted as dw and the
weights are assigned using the following weighting
scheme. Let xj originate from class i and let ni be the
number of genomes in class i. Furthermore, let T be the
number of genomes constituting the reference set. The
weighted distance function dw is given by:

This weighting scheme assigns small weights to the GFVs
belonging to the majority classes and a relative larger
weight for GFVs contained in the minority classes.

Testing
As a proof of concept the method was evaluated on a data
set containing fragments from 373 completely sequenced
genomes representing a vast majority of members from
the archaeal and bacterial group. All completely
sequenced genomes available up to March 2008 were
downloaded from the SEED database [30]. The selected
genomes represent 2 Superkingdoms, 11 Phyla, 21
Classes, 45 Orders and 61 Genera. The taxonomic infor-
mation for this data set was collected from the taxonomy
database located at the US National Center for Biotech-
nology Information (NCBI) [31]. Some of the genomes
downloaded from SEED were unfinished and present as
several contigs. In this case, all contigs of each genome
were arbitrarily joined together.

Evaluation strategy
The classification accuracy of the presented method was
assessed using the leave-one-out cross-validation strategy.
In the leave-one-out cross validation, one genome is used
to generate fragments of a fixed length and thereafter the
taxonomic origin of each fragment was predicted using
the remaining 372 genomes and used as the reference set
(Figure 1). This simulates the case when the taxonomic
origin of DNA fragments is predicted that stem from
genomes that are not yet represented in the public
genome databases. In a second experiment we also evalu-
ated the classification accuracy of the method with the test
set included in the reference set, i.e. in this case the frag-
ments of each genome were taxonomically classified
using all 373 genomes as a reference. This experiment sim-
ulated the case when fragments need to be classified but
they stem from genomes that are already represented in
the reference set.

Parameter optimization
We extensively investigated the oligonucleotide length
parameter choosing different values of l (2 ≤ l ≤ 6) and
detected the length which resulted in the maximal classi-
fication accuracy. For short fragment lengths only small l
values were considered to guarantee that all possible oli-
gonucleotides have a sufficient occurrence, i.e. 4l < |s| in a
genomic fragment s (see Methods). The optimal oligonu-
cleotide length l was identified for each genomic fragment
length at each taxonomic rank.

Oligonucleotides of length 4 were sufficient to achieve
high classification rates for genomic fragments of length
800 bp, 1 Kbp, and 3 Kbp. For genomic fragments of
length 10 Kbp, 15 Kbp, and 50 Kbp, oligonucleotides of
length 5 were best suited for classification. A general trend
for all genomic fragment lengths was that both average
specificity and average sensitivity dropped when oligonu-
cleotides longer than 5 were analyzed. In Additional file 1
the oligonucleotide length-dependent classification accu-
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A sketch of the leave-one-out cross validation strategy adopted in this studyFigure 1
A sketch of the leave-one-out cross validation strategy adopted in this study. A genome is selected from the data set 
comprising 373 genomes and fragmented subsequently. The collection of genomic fragments is regarded as the test set from 
which each fragment is drawn and subsequently classified. Classification of each test fragment is carried out using the remaining 
372 organisms as a reference.
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racy is exemplified using sequence of length 800 bp and
50 Kbp. Conversely, the false negative rate increased when
longer oligonucleotide lengths were considered (Addi-
tional file 1). A detailed table summarizing average accu-
racy values and standard deviations for the two different
fragment lengths (800 bp and 50 Kbp) and for each oligo-
nucleotide length analyzed is given as Additional file 2.

The kernel parameter  governs the width of the local
neighborhood, thus influencing the local behavior of the
decision boundary allowing to search for an optimal
trade-off between a well-fitted and a more generalized
classifier.

A grid search (2 ≤  ≤ 1000) was employed to detect values
of  resulting in maximal accuracy values ( opt). In general,

opt is smaller at lower taxonomic ranks (Table 1). This
observation may be explained by the drastic increase on
the number of taxonomic classes at deeper ranks. If a large
number of taxonomic classes occur at deeper ranks, the
neighborhood to be considered in the classification task
needs to be smaller (small ) than for broader taxonomic
ranks. On the other hand, if a large  is considered and a
large number of classes exists, the respective neighbor-
hood of a query genomic vector may cover too many ref-
erence vectors from diverse taxonomic classes; resulting in
a negative impact on the classification accuracy. However,
if the reference vectors from a taxonomic class are sparsely
distributed from the query genomic vector, it is necessary
to consider a bigger neighborhood (large ). This may
explain those cases where a large opt is obtained.

During the optimization procedure, optimal parameters
were chosen based on average accuracy values over all tax-

onomic classes at each taxonomic rank, therefore it may
occur that the optimal parameters chosen are indeed sub-
optimal for some taxonomic classes at a given rank. In
consequence, the accuracy for some taxonomic classes can
drop dramatically, this situation can be seen as "gaps" in
Figure 2.

From a practical perspective we regarded it to be more val-
uable to produce a low number of highly reliable predic-
tions rather than a large number of predictions with low
reliability. Therefore, in this study we favored parameters
that produce a high specificity rather than a high sensitiv-
ity.

Classification accuracy for genomic fragments of variable 
length
The classification accuracy of TACOA was evaluated on
genomic fragments of lengths ranging from 800 bp to 50
kbp. A total of 11,730,382 genomic fragments from 373
different species were analyzed, comprising ≈42 Mb of
sequence data. The classification accuracy for all different
evaluated genomic fragment lengths, taxonomic ranks,
and taxonomic classes is given in detail in Figure 2.

A high proportion of contigs (genomic fragments of
length 3 Kbp, 10 Kbp, 15 Kbp, and 50 Kbp) was correctly
classified with an average sensitivity between 76% at rank
superkingdom and 39% at rank genus (Figure 3). At the
same time, less than 10% of contigs were misclassified
(false negative rate) at all taxonomic ranks. For the
remaining contigs the taxonomic origin could not be
inferred and hence these were assigned to the "unclassi-
fied" class. Overall, reliable predictions were obtained
with an average specificity ranging from 89% at
superkingdom to 71% at rank genus. For the longest ana-
lyzed contig length (50 Kbp), TACOA achieved an average
sensitivity of 82% at superkingdom and 46% at genus,
and specificity of 93% (superkingdom) and 77% (genus)
(Figure 2, Additional file 3). Also for shorter contigs, a
high classification accuracy was obtained. For example,
74% of the contigs of length 3 Kbp were correctly classi-
fied at rank superkingdom and 31% at rank genus (Figure
2, Additional file 3), the specificity for contigs of length 3
kbp reached values between 74% (superkingdom) and
31% (genus).

In this evaluation, single reads were represented by
genomic fragments of length 800 bp – 1 Kbp. TACOA is
capable of accurately predicting the taxonomic origin of
single reads up to the rank of class, despite the limited
information contained in these short sequences. A high
proportion of reads was correctly classified. For reads of
length 800 bp, the average sensitivity was between 67% at
superkingdom to 16% at rank class and for reads of length
1 Kbp, it ranged from 71% to 22%. Furthermore, in aver-
age only between 9% (superkingdom) and 5% (class) of

Table 1: Optimized parameter obtained for each genomic 
fragment length at each taxonomic rank

opt

Fragment length S P C O G

800 bp 500 300 100 25 100

1 Kbp 500 300 200 100 100

3 Kbp 500 300 300 500 400

10 Kbp 300 400 300 100 90

15 Kbp 400 300 500 200 100

50 Kbp 500 1000 400 500 80

Optimal lambda parameter ( opt) is shown for each genomic fragment 
length at each taxonomic rank: Superkingdom (S), Phylum (P), Class 
(C), Order (O), and Genus (G).
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Classification accuracy achieved for genomic fragments of different lengthsFigure 2
Classification accuracy achieved for genomic fragments of different lengths. Bars depict detailed specificity and 
average values for specificity (Sp.), sensitivity (Sn.) and false negative rate (FNr.) for each fragment length on different taxo-
nomic ranks. Each color represents a genomic fragment length.
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reads were misclassified. Overall, reliable predictions were
obtained, with an average specificity ranging from 73%
(superkingdom) to 62% (class) for 800 bp reads and
between 73% and 64% for reads of length 1 Kbp. In light
of the limited information contained in fragments of
length 800 bp – 1 Kbp and the complexity of the classifi-
cation problem (e.g. 62 classes on rank genus), TACOA
also achieves a surprisingly good performance for single
reads at rank order and genus (Additional file 3).

However, in practice it is not recommended to interpret
classification results of single reads on these ranks because
only a small number of fragments may be represented in
the currently available sequenced genomes. In real
metagenomic data sets, already sequenced organisms may
be contained in the studied sample. Therefore, the classi-
fication accuracy of TACOA was also assessed for frag-
ments stemming from organisms included in the
reference set (Additional file 4). As expected, having the
source organisms of classified fragments included in the
reference set has a markedly positive impact on the accu-
racy at all taxonomic ranks. The sensitivity increased of up
to 30%. Furthermore, the specificity substantially
increased while the false negative rate was reduced (Addi-
tional file 4).

As a general trend, the accuracy improves when longer
genomic fragments were classified (Figure 2, Additional
file 3). For example, on rank superkingdom the sensitivity
increased from 67% for 800 bp reads to 82% for 50 Kbp
contigs and at rank genus from 5% to 46%. Conversely,
the accuracy decreases as deeper taxonomic ranks were
examined (Figure 3, Additional file 3, Additional file 4).

In general, it is easy to predict classes that are well repre-
sented in the reference set, while detecting the underrep-
resented taxonomic groups is more challenging (Figure
2). TACOA is capable of detecting a remarkably high
number of different taxonomic classes, if they are present
in a studied sample. For example for contigs of length 3
Kbp, TACOA achieved a sensitivity above 20% for all 11
phyla, for 18 of the 21 classes, for 30 of the 45 orders, and
for 33 of the 61 genera represented in our test set (Addi-
tional file 5 and Additional file 6).

Assessing the classification accuracy of TACOA and 
PhyloPythia for genomic fragments of variable length
We compared the classification accuracy (sensitivity, spe-
cificity and false negative rate) of our proposed kernelized
k-NN classification method with PhyloPythia, which
employs a hierarchical collection of SVMs for the taxo-
nomic classification of environmental fragments. The set
of completely sequenced genomes used for comparison
was selected as follows: at rank class, two different
genomes were randomly chosen from each taxonomic
class guaranteeing that the data set used in the compari-
son is unbiased. Moreover, the genomes were randomly
selected from the universe of all recently published
genomes ensuring that the test set is not contained in the
training set of PhyloPythia or reference set of TACOA. The
selected test set resembles very well the situation when the
classifiers need to predict the taxonomic origin of organ-
isms that have not yet been sequenced.

In general, TACOA and PhyloPythia achieved quite com-
parable classification accuracies, but TACOA has a slightly
improved performance for the classification of short DNA
fragments. For the classification of reads of length 800 bp
and 1 Kbp, TACOA has a higher sensitivity while both
tools achieve a comparable false negative rate and specifi-
city values (Figure 4). Remarkably, on ranks order and
genus TACOA is still able to correctly classify between 3%
and 17% of short fragments (sensitivity), while PhyloPy-
thia cannot infer the taxonomic origin of any of the frag-
ments and thus has an average sensitivity of 0%. For
longer contigs (DNA fragments of length 10 Kbp) Phy-
loPythia is more sensitive on higher taxonomic ranks
(superkingdom, phylum and class). In contrast, TACOA
produces less misclassifications (false negative rate) mak-
ing its prediction more reliable. On lower taxonomic
ranks (genus and order), TACOA is able to correctly infer
the taxonomic origin of about 10% to 17% of all contigs,
while PhyloPythia has a sensitivity of 0% for all taxo-
nomic groups at these ranks.

A closer analysis of the classification of short DNA frag-
ments, across ranks superkingdom to class, reveals that
TACOA achieved sensitivity values of 71% to 3% for 800
bp fragments and 76% to 11% for 1 Kbp fragments. On

Overall performance for reads and contigs for each taxo-nomic rankFigure 3
Overall performance for reads and contigs for each 
taxonomic rank. Average sensitivity (Sn.), specificity (Sp.), 
and false negative rate (FNr.) achieved for reads and contigs 
at each taxonomic rank.
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Classification accuracy obtained for TACOA and PhyloPythiaFigure 4
Classification accuracy obtained for TACOA and PhyloPythia. Sensitivity (top), specificity (middle) and false negative 
rate (bottom) achieved by TACOA and PhyloPythia for three different genomic fragment lengths and taxonomic ranks evalu-
ated. Single read lengths are represented by fragments of length 800 bp and 1 Kbp and contigs by 10 Kbp long fragments. The 
accuracy achieved is depicted using green bars for TACOA and blue bars for PhyloPythia. The sensitivity and specificity charts 
are scaled between 0–100% and the false negative rate is scaled between 0–30%.



BMC Bioinformatics 2009, 10:56 http://www.biomedcentral.com/1471-2105/10/56
the other hand, at ranks superkingdom, phylum and class
PhyloPythia obtained a slightly lower sensitivity of 66%
to 6% for 800 bp fragments and 75% to 9% for 1 Kbp frag-
ments. At deeper ranks order and genus, TACOA is able to
correctly classify between 3% and 7% of all short frag-
ments (sensitivity), while only between 1% and 2.43% of
fragments are misclassified (false negative rate). In con-
trast, PhyloPythia was not able to predict any taxonomic
class resulting in a sensitivity of 0% for all groups on these
two ranks. Overall, for short fragments TACOA is more
sensitive at almost all taxonomic ranks, in particular at
ranks order and genus. The only exception is at rank class,
at which PhyloPythia is more sensitive for the classifica-
tion of 800 bp fragments. At the same time, for the classi-
fication of short fragments TACOA has a slightly lower
false negative rate for almost all taxonomic ranks. The
only exceptions are rank phylum at which PhyloPythia
has a lower false negative rate for 800 bp fragments. For
the classification of contigs of length 10 Kbp, TACOA
achieved a sensitivity between 73% and 30% at ranks
superkingdom to class, while PhyloPythia correctly classi-
fied between 82% and 47%. According to these results
PhyloPythia was between 9% and 17% more sensitive
than TACOA. But for the same contig length and ranks,
TACOA is between 10% and 9% more specific than Phy-
loPythia. In addition, a high percentage of misclassifica-
tions was also observed for PhyloPythia (18.64% in
average) in contrast to that achieved by TACOA (4.30% in
average). At lower taxonomic ranks, TACOA achieved
average sensitivity values between 17% (order) and 10%
(genus) for the classification of 10 Kbp contigs, while Phy-
loPythia was not able to predict any taxonomic class for
these long contigs, thus obtaining a sensitivity of 0% (Fig-
ure 4). Although PhyloPythia was not able to make pre-
dictions for ranks order and genus, a marginal
misclassification rate was observed (0.14% at rank order
and 0.10% at rank genus) for a fragment length of 10 Kbp.
Detailed sensitivity, specificity and false negative rate val-
ues for all taxonomic ranks and evaluated lengths are
given in Additional file 7, Additional file 8 and Additional
file 9.

Influence of horizontal gene transfer on the classification 
accuracy of an intrinsic-based classifier
The classification accuracy of methods using composi-
tion-based features might be influenced by a heterogene-
ous nucleotide composition present in the DNA sequence
of the analyzed genomic fragment. Although differences
in the nucleotide composition of DNA sequences can be
linked to a number of genomic attributes, including
codon usage, DNA base-stacking energy, DNA structural
conformation, strand asymmetry and even relic features
of the primary genetic information, horizontal gene trans-
fer events (HGT) is one of the most common cause

[32,33]. The work of Brown et al. also suggests that despite
the rapid changes on the nucleotide composition of recent
transferred DNA chunks, the phylogenetic signal from the
donor can still be detected if the HGT event is recent,
rather than ancient [34]. Since the importance of HGT
events has been gaining increasing attention lately [35],
we investigated its influence in the accuracy of the intrin-
sic-based classifier TACOA.

One of the findings of this work is that tetranucleotides
were best suited to analyzed genomic fragments ≤ 3 Kbp.
But it has been reported that tetranucleotide frequencies
are a good measure to detect horizontally transferred
regions [36]. Therefore, any classifier aiming to predict the
taxonomic origin of genomic fragments based on a tetra-
nucleotide feature is susceptible to "wrongly" classify to
the donor taxonomic class a genomic fragment obtained
via HGT. To explore the influence of HGT events in the
classification accuracy of TACOA, we selected fragments
of length 1 Kbp from two genomes (one archaeal and one
bacterial). Several studies [37-40] have reported acquisi-
tion of large stretches of DNA via HGT events for Thermo-
plasma acidophilum (archaea) and for Thermotoga maritima
(bacteria).

In particular, the archaeal genome of Thermoplasma acido-
philum has been reported to acquire ≈12% of its genome
via HGT. The main donors seem to belong to bacterial
organisms, but also some archaeal species have been
detected [37,38]. It has been suggested that T. acidophilum
has received genes via HGT from Sulfolobus solfataricus, a
distantly related crenarchaeota living in the same ecologi-
cal niche [38,39]. The sensitivity achieved by TACOA for
T. acidophilum was 43% for reads 800 bp long and 51% for
reads of length 1 Kbp.

In order to evaluate the taxonomic distribution of misclas-
sifications for T. acidophilum genomic fragments, we frag-
mented its genome in pieces of length 1 Kbp and
predicted their taxonomic origin. For the 1,564 fragments
analyzed, we found that 1% (16 from 1,564) were mis-
classified into the order sulfolobales, another 3% (47
from 1,564) into other members of the euryarchaeota
group, 7% (110 from 1,564) to a variety of members from
the bacterial group, and 38% (601 from 1,564) could not
be classified (Figure 5). From the proportion of genomic
fragments that were "erroneously" misclassified, the larg-
est fraction (7%) was placed into the sulfolobus group.
The results of the taxonomic distribution of "misclassifi-
cations" made by TACOA for T. acidophilum are in close
agreement to previous studies [37,38]. Hence, the low
number of correctly classified fragments obtained for T.
acidophilum at rank genus may be partially explained by
the lateral transfered DNA from other species.
Page 10 of 16
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We also explored the bacterial genome of Thermotoga mar-
itima, which is another organism with a high number of
candidate genes that have been presumably acquired from
archaea via HGT [37]. A total of 1,860 genomic fragments
of length 1 Kbp each were classified using TACOA and
analyzed (Additional file 8). A high number of misclassi-
fied genomic fragments were "wrongly" assigned to the
archaeal group (91 from 1,860), a small fraction (27 from
1,860) was erroneously assigned to the sulfolobus group
and 27% (503 from 1,860) could not be classified. Con-
versely to T. acidophilum, the genome T. maritima seems to
be recipient of DNA originating mainly from archaeal spe-
cies as suggested by other authors [37-40]. These two case
studies strongly suggest that horizontally transfered
stretches of DNA can affect the classification accuracy of a
classifier using compositional based features to infer the
taxonomic origin of genomic fragments. A possible expla-
nation for this observation is that the nucleotide compo-
sition of transferred DNA chunks still carry phylogenetic
signals from the donor genome after the HGT event has
occurred as suggested by Brown [34].

Discussion and conclusion
Our novel strategy named TACOA can accurately predict
the taxonomic origin of genomic fragments from metage-
nomic data sets by combining the advantages of the k-NN
approach with a smoothing kernel function. The reference
set used by our proposed method can be easily updated by
simply adding the Genomic Feature Vectors (GFVs) from
the new genomes to the reference set without the need of
retraining. Our standalone tool TACOA can also be easily
installed and run on a desktop computer, therefore allow-
ing researchers to locally analyze their metagenomic
sequence data or integrate it into their pipelines.

Analogous to PhyloPythia, researchers can easily incorpo-
rate sample specific-models from particular organisms

into the framework of TACOA. The use of sample-espe-
cific models can greatly support the identification of
organisms of special interest. Sample specific-models can
be easily incorporated into the framework of TACOA by
the researcher using the following approach: Genomic
fragments carrying phylogenetic marker genes (such as
rRNA genes) or fragments with high similarity to reference
sequences of known origin (identified using a blast
search) can be taxonomically annotated in a pre-process-
ing step. Subsequently, these annotated fragments can be
added to the reference set of TACOA. This can be easily
done with the "addReferenceGenome" program provided
by TACOA. The use of sample-specific models will
improve the accuracy of the classifier for those species that
have a reference sequence in public databases (i.e. because
the test set is contained in the reference set). In this work,
we demonstrated that having the test set in the reference
set can have a positive impact on the sensitivity and spe-
cificity of up to 30% and at the same time a decline on the
false negative rate is observed (Additional file 4).

As a whole, we evaluated the classification accuracy at five
different taxonomic ranks: Superkingdom, Phylum, Class,
Order, and Genus. TACOA can correctly classify genomic
fragments of length as short as 800 bp up to rank class.
Our proposed method can be used to predict the taxo-
nomic origin of genomic fragments sequenced from any
technology producing fragments ≥ 800 bp. Our strategy
also produced reliable predictions for genomic fragments
originating from taxonomic groups that are absent from
the reference set (simulating fragments stemming from
genomes not yet sequenced). On average and over all tax-
onomic ranks, 77% of these fragments were correctly clas-
sified as "unknown".

TACOA compares well to the current most sophisticated
taxonomic classifier for environmental fragments Phy-
loPyhtia. In terms of percentage of correctly classified frag-
ments (sensitivity) TACOA slightly outperforms
PhyloPythia for reads of length 800 bp and 1 Kbp at all
taxonomic ranks evaluated, except for reads 800 bp at
rank class. But the very low false negative rate (0.16%)
and the high specificity (86%) of TACOA makes the accu-
racy for reads of length 800 bp (at rank class) comparable
to that obtained by PhyloPythia. Compared to TACOA,
the overall reduced sensitivity obtained by PhyloPythia
(evident for the analyzed read lengths) is partially due to
the absence of the phylum Chloroflexi and Thermatogae
from its training set. This example illustrates the positive
effect of an updated training or reference set in the predic-
tion of known taxonomic classes.

For contigs of length 10 Kbp, TACOA achieved lower sen-
sitivity, lower false negative rate and higher specificity val-
ues than PhyloPyhtia. Although PhyloPythia achieves
higher sensitivity values for contigs of length 10 Kbp the

Distribution of taxonomic assignments for Thermoplasma acidophilumFigure 5
Distribution of taxonomic assignments for Thermo-
plasma acidophilum. Proportions of genomic fragments 
originating from the T. acidophilum genome that are misclassi-
fied into other taxonomic groups.
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overall performance is comparable for both classifiers at
ranks superkingdom, phylum and class.

At deeper taxonomic ranks (order and genus), for all eval-
uated lengths TACOA was still able to provide correct clas-
sifications for several taxonomic classes (average
sensitivity of about 7%) while PhyloPythia failed in mak-
ing any taxonomic assignments (sensitivity of 0%). With
an average sensitivity of 17% (order) and 10% (genus), an
average false negative rate of 1.45% (order) and 2.29%
(genus), TACOA can provide a more detailed view of the
taxonomic composition of an environmental sample.
Notice that in practice it is not recommended to draw con-
clusions at such deep ranks for reads ≤ 1 Kbp because only
a small number of fragments may be represented in the
currently available sequenced genomes.

An interesting observation made during this work was
that the classification of genomic fragments is possible
using only GFVs computed from completely sequenced
genomes rather than computing the vectors on fragments
from genomes. Similar observations have already been
made by Abe et al. in 2005 and 2006 and more recently by
McHardy et al. in 2007, where the developed classifiers
were trained with genomic fragments longer than the ones
being tested. Here we demonstrated that even complete
genomes can be used as reference to classify environmen-
tal genomic DNA fragments.

This study supports the findings that frequencies of short
length oligonucleotides (i.e. tetra- and penta-oligonucle-
otides) are best suited to capture taxon-specific differences
among prokaryotic genomes [10,11,16,20]. Moreover,
our parameter search analysis strongly suggests that tetra-
or penta-oligonucleotide frequencies are optimal features
for TACOA to classify environmental genomic fragments
as short as 800 bp. This observation is in accordance to
those reported by Bohlin et al. [32] who already proposed
that little increase in information potential about phylo-
genetic relationships is gained in oligonucleotide sizes
larger than hexa-nucleotides.

We showed that recent events of HGT can affect the accu-
racy of a composition-based classifier. The correct classifi-
cation of horizontally transferred regions into its
"current" taxon is difficult if these still carry a strong phy-
logenetic signal from the donor genome. This was illus-
trated by classifying fragments of length 1 Kbp from the
archaea T. acidophilum and the bacteria T. maritima. Nota-
bly, HGT is not the only phenomena causing variations in
the oligonucleotide frequencies within genomes and
hence affecting the classification performance.

TACOA combines the ability of predicting the taxonomic
origin of genomic fragments with high accuracy and the

advantage of being a tool that can easily be installed and
used on a desktop computer breaking any dependency
and limitations that web server services may bring. Alto-
gether, it strongly suggests that TACOA offers a great
potential to assist on the exploration of the taxonomic
composition of metagenomic data sets.

Methods
Computation of genomic feature vectors (GFV) using the 
oligonucleotide frequency deviation
In the following, the computation of GFVs used by the
TACOA classifier is described in detail. Computation of
the GFVs is performed for each genome in the reference
set and for each read and contig to be classified.

An oligonucleotide o is defined as a string over the alpha-
bet ∑ = {a, t, c, g}. The total number of possible oligonu-
cleotides of length l is given by 4l, e.g. for l = 3
oligonucleotides can take the form of o[1] = aaa, o[2] = aat,
..., o[64] = ggg. To build a GFV for a genomic fragment, for
each oligonucleotide the oligonucleotide deviation score
is computed as the ratio between the observed oligonucle-
otide frequency in the fragment and the expected oligonu-
cleotide frequency in that fragment given its GC-content.
The GC-content has a profound impact on the sequence
composition of genomes but a low phylogenetic signal. It
has been shown that closely related organisms coming
from different environments may show profound differ-
ences in GC-content [41].

More formally, given a genomic fragment s, for each oli-
gonucleotide o[y](y = 1, 2, 3, ..., 4l) we count the number
of occurrences of o[y] in s. The counting of the oligonucle-
otide frequencies is conducted in a sliding window
approach with step size of 1 and window size l. This ratio
is carried out on the forward and reverse DNA strand.

In order to more efficiently recover the phylogenetic sig-
nal contained in the oligonucleotide frequency deviation,
we correct for biases introduced by the GC-content of the
genomic fragments. The expected frequency for a certain
oligonucleotide o in a genomic fragment s can be esti-
mated by:

where oq is the nucleotide at position q of o and p(oq)

defines the probability to observe oq in the analyzed

genomic fragment, given its GC-content. The length of a
genomic fragment is defined as |s| and |o| is the length of
an oligonucleotide. Let O[o] be the observed occurrence of
oligonucleotide o in the analyzed genomic fragment, then
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p(oq) is estimated by . For each oligonu-

cleotide o, a deviation score g(o) is computed in a given
genomic fragment, which is normalized by the GC-con-
tent. The deviation score g(o) resolves for under and over-
represented oligonucleotide frequencies in a genomic
fragment. The deviaton score g(o) is given by:

The computed g(o) for each possible o[y] of length l in a
given genomic fragment is summarized in a GFV x (Equa-
tion 7), this approach is also referred to as the vector rep-
resentation model [29].

Measuring the classification accuracy
We selected different genomic fragment lengths to simu-
late DNA fragments obtained in real metagenomic
sequencing projects. Genomic fragments of length 800 bp
and 1 Kbp were chosen to resemble single reads derived
by the Sanger technology. Assembled contigs were simu-
lated selecting fragment lengths of 3 Kbp, 10 Kbp, 15 Kbp,
and 50 Kbp. Genomic fragment generation was executed
in the following manner: For each completely sequenced
genome and for each chosen genomic fragment length,
3000 non-overlapping fragments were extracted from the
selected genome and subsequently included into the test
set.

We estimated the classification accuracy of the presented
method (TACOA) based on the leave-one-out cross-vali-
dation strategy. We selected one genome from the 373 dif-
ferent organisms, generated genomic fragments of a given
length |s|, represented them as GFVs and predicted their
taxonomic origin using the remaining 372 organisms as
the reference set (refset). Hereby, each of the 372 genomes
in the reference set is represented as a GFV. This procedure
was repeated for each genome out of the 373 completely
sequenced genomes present in the data set (Figure 1).

The classification accuracy of the presented method was
assessed at each taxonomic rank. At each taxonomic rank,
the predicted class of each query genomic fragment was
compared to its known taxonomic class. We evaluated the
classification accuracy for those genomes having at least

two different representatives per taxonomic class. Further-
more, we also evaluated the classification accuracy for
those genomes only having one member per taxonomic
class, in which case the method should assign them to the
"unknown" class. The latter evaluation mimics the situa-
tion of organisms without a reference genome because
they have not yet been sequenced. The classification accu-
racy of the presented method was assessed at each taxo-
nomic rank.

In this study, we employed the adapted definition of sen-
sitivity and specificity proposed by Baldi et al. in 2000
[42]. The classification accuracy was evaluated for each
taxonomic class. Let the i-th taxonomic class of taxonomic
rank r be denoted as class i. Further, let Zi be the total
number of genomic fragments from class i, the true posi-
tives (TPi) the number of genomic fragments correctly
assigned to class i, the false positives (FPi) the number of
fragments from any class j ≠ i that is wrongly assigned to
i. The false negatives (FNi) is defined as the number of
fragments from class i that is erroneously assigned to any
other class j ≠ i. For a genomic fragment whose taxonomic
class cannot be inferred, the algorithm classifies it as
"unclassified". The unclassified (Ui) are the number of
fragments from class i that cannot be assigned to a taxo-
nomic class, so Zi = TPi + FNi + Ui.

The sensitivity (Sni) for a taxonomic class i is defined as
the percentage of fragments from class i correctly classified
and it is computed by:

The reliability (expressed in percentage) of the predictions
made by the classifier for class i is denoted as specificity
(Spi) and it is measured using the following equation:

Note that the specificity for class i is undefined for those
cases when the terms TPi and FPi are both zero (marked as
(-) in Additional figures 7 – 9). The overall specificity is
computed over those classes that have a defined specificity
value.

We make use of the false negative rate (FNri) to measure
the percentage of items from class i that is misclassified
into any class j ≠ i, which is given by:
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Measuring the classification accuracy in the comparison of 
PhyloPythia and TACOA
The set of completely sequenced genomes used for com-
parison was selected as follows: at rank class, two different
genomes were randomly chosen from each taxonomic
class guaranteeing that the data set used in the compari-
son is unbiased. This procedure yielded a set of 63
genomes that were downloaded from the NCBI genome
database [31]. For each evaluated fragment length and for
each selected genome, ten non-overlapping genomic frag-
ments were randomly extracted for classification. We eval-
uated both classification strategies at five different
taxonomic ranks using three different genomic fragment
lengths: 800 bp, 1 Kbp, and 10 Kbp. The PhyloPythia web
server with the built-in generic model was employed to
predict the taxonomic origin of genomic fragments gener-
ated from the 63 selected genomes. To predict the taxo-
nomic origin of fragments from the same set of 63
selected genomes TACOA was executed using the default
parameters. Notice that this evaluation aims to investigate
the performance that a researcher should expect when
analyzing their metagenomic data. The evaluation is not
intended to assess the theoretical classification power of a
kernelized k-NN against SVMs.

The accuracy of both classifiers was assessed using the sen-
sitivity, false negative rate and specificity. Values of sensi-
tivity, specificity and false negative rate were computed as
previously described in this section. For the analysis of the
comparison results between PhyloPythia and TACOA, we
decided to give more emphasis to the obtained sensitivity
and the false negative rates (FNr or misclassifications) to
account for possible compositional biases of the data set.
The sensitivity and the FNr measured for one class do not
depend on the composition of the remaining classes
(since the term false positive is absent in the equations of
sensitivity and FNr). Hence, the sensitivity and FNr meas-
ured for each taxonomic group is not affected by possible
biases of the test set. Contrastingly, the specificity meas-
ured for a class is strongly affected by the composition of
the test set since it includes the false positives obtained
from other classes.

Availability
TACOA can be downloaded at http://www.cebitec.uni-
bielefeld.de/brf/tacoa/tacoa.html
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Additional material

Additional file 1
Oligonucleotide length-dependent performance for two different 
genomic fragment length. Achieved specificity (left), sensitivity (middle) 
and false negative rate (right) for different oligonucleotide lengths in 
genomic fragments of length 800 bp (a) and 50 Kbp (b). For clarity the 
standard deviation was not depicted in these figures, instead is given as 
Additional file 2.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-56-S1.pdf]

Additional file 2
Standard deviation for average accuracy and false negative rate 
achieved for different oligonucleotide lengths. Standard deviation and 
average specificity, sensitivity and false negative rate is given for all oligo-
nucleotide lengths and taxonomic ranks evaluated.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-56-S2.pdf]

Additional file 3
Fragment-length and rank dependent performance. Sensitivity (left) 
and specificity (right) achieved by TACOA for each genomic fragment 
length and taxonomic rank evaluated. Single read lengths are simulated 
by fragments 800 bp and 1 Kbp long and contigs by fragment lengths 
between 3 Kbp and 50 Kbp.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-56-S3.pdf]

Additional file 4
Classification accuracy achieved using two different reference sets. 
Each colored bar depicts the accuracy achieved by TACOA with two dif-
ferent reference sets. The label "Taxonomic organism of test fragment 
absent from reference set" refers when the test fragment is classified using 
a reference set not containing the source organism from which the test 
fragment originates from.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-56-S4.pdf]

Additional file 5
Intervals for specificity (left) and sensitivity (right) of predicted taxo-
nomic classes for reads. Classification accuracy intervals for genomic 
fragments of length 800 bp (top) and 1 Kbp (bottom).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-56-S5.pdf]

Additional file 6
Intervals for specificity (left) and sensitivity (right) of predicted taxo-
nomic classes for contigs. Classification accuracy intervals for genomic 
fragments of length 3 Kbp, 10 Kbp, 15 Kbp, and 50 Kbp (from top to bot-
tom).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-56-S6.pdf]
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Additional file 7
Detailed accuracy obtained for genomic fragments of length 800 bp 
using TACOA and PhyloPythia classifiers. At each taxonomic rank, the 
classification accuracy (specificity and sensitivity) achieved for two differ-
ent intrinsic classifiers: TACOA and PhyloPythia is given. The symbol (-
) refers to the cases where the respective value cannot be mathematically 
defined.
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Additional file 8
Detailed accuracy obtained for genomic fragments of length 1 Kbp 
using TACOA and PhyloPythia classifiers. At each taxonomic rank, the 
classification accuracy (specificity and sensitivity) achieved for two differ-
ent intrinsic classifiers: TACOA and PhyloPythia is given. The symbol (-
) refers to the cases where the respective value cannot be mathematically 
defined.
Click here for file
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Additional file 9
Detailed accuracy obtained for genomic fragments of length 10 Kbp 
using TACOA and PhyloPythia classifiers. At each taxonomic rank, the 
classification accuracy (specificity and sensitivity) achieved for two differ-
ent intrinsic classifiers: TACOA and PhyloPythia is given. The symbol (-
) refers to the cases where the respective value cannot be mathematically 
defined.
Click here for file
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2105-10-56-S9.pdf]
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