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Abstract
Background: Mass spectrometry is a key technique in proteomics and can be used to analyze
complex samples quickly. One key problem with the mass spectrometric analysis of peptides and
proteins, however, is the fact that absolute quantification is severely hampered by the unclear
relationship between the observed peak intensity and the peptide concentration in the sample.
While there are numerous approaches to circumvent this problem experimentally (e.g. labeling
techniques), reliable prediction of the peak intensities from peptide sequences could provide a
peptide-specific correction factor. Thus, it would be a valuable tool towards label-free absolute
quantification.

Results: In this work we present machine learning techniques for peak intensity prediction for
MALDI mass spectra. Features encoding the peptides' physico-chemical properties as well as string-
based features were extracted. A feature subset was obtained from multiple forward feature
selections on the extracted features. Based on these features, two advanced machine learning
methods (support vector regression and local linear maps) are shown to yield good results for this
problem (Pearson correlation of 0.68 in a ten-fold cross validation).

Conclusion: The techniques presented here are a useful first step going beyond the binary
prediction of proteotypic peptides towards a more quantitative prediction of peak intensities.
These predictions in turn will turn out to be beneficial for mass spectrometry-based quantitative
proteomics.

Background
Today, mass spectrometry (MS) is an indispensable tech-
nique for the analysis of proteins and peptides in the life
sciences. Various approaches have been developed to
allow the comparison of protein abundances in cells

between different environmental states. A growing
number of studies in proteomics aim to quantitatively
characterize proteomes for a better understanding of cel-
lular mechanisms. These studies use either isotopic labe-
ling or label-free methods for protein quantification [1].
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Using isotopic labeling methods, protein mixtures are
tagged with a stable isotope that can be used to tell sam-
ples apart by their mass shift and to directly compare
peaks from different samples. With SILAC (Stable Isotope
Labeling with Amino acids in Cell culture) [2], a meta-
bolic labeling method, labels are introduced during cell
growth and division. Chemical labeling methods such as
ICAT (Isotope Coded Affinity Tags) [3] and iTRAQ (Iso-
tope Tags for Relative and Absolute Quantification) [4]
introduce the label into peptides after proteolytic diges-
tion. These methods allow accurate quantification relative
to the tagged sample at the expense of additional costly
and time-consuming experimental processing steps. Enzy-
matic labeling with 18O [5] during or after proteolytic
digestion is another technique that avoids the complica-
tions that chemical labeling may cause but can be applied
if metabolic labeling is not possible. However, labeling
efficiency differs between peptides, which causes difficul-
ties when comparing abundances between different pro-
teins.

In contrast, label-free methods directly use the signal
intensities or spectral counts to estimate peptide abun-
dances. But peak intensities also depend on peptide ioni-
zation efficiencies, which are influenced by a peptide's
composition and the chemical environment. In other
words, the sensitivity of a mass spectrometer varies
between peptides. Therefore, two peptides with identical
abundance will generally lead to different peak intensities.
In a recent review of label-free LC-MS, America and Cord-
ewener [6] state that "Normalisation of peptide abun-
dance data is probably the most essential for
improvement of the quantitative accuracy of the experi-
ment." Absolute quantification with very high accuracy
using label-free methods is possible through the use of ref-
erence peptides [7], an example being AQUA (Absolute
Quantification of Proteins) [8]. But again, such methods
require significant experimental effort.

Consequently, label-free techniques are routinely used
only for differential quantification, that is, the determina-
tion of concentration ratios between samples.

Nonetheless, label-free methods have several intrinsic
advantages over labeling techniques. Obviously, they do
not require labor- and cost-intensive labeling. Also, there
is no fundamental limit to the number of samples that can
be compared. Unlike labeling techniques, label-free meth-
ods do not increase the mass spectral complexity. They
have the potential to analyze a higher range of protein
concentrations and to achieve a higher proteome cover-
age.

There exist two fundamentally different experimental set-
ups for label-free quantification using MS: in both cases,

proteins are digested and peptides are separated using Liq-
uid Chromatography (LC). In the first case, the LC is
directly coupled to an ElectroSpray Ionization (ESI) mass
spectrometer, which allows a simple experimental setup
and a rapid analysis of separated peptides. In the second
case, LC fractions are spotted and analyzed using Matrix-
Assisted Laser Desorption Ionization (MALDI) MS [9-11].
Using MALDI MS has certain advantages such as a more
efficient data-dependent analysis: because the sample por-
tions from the LC can be stored for several days and rean-
alyzed when necessary, it is possible to acquire
fragmentation ion spectra for all MS parent ions that are
of interest. Spectra are easier to interpret and compare
because mostly singly charged ions are produced and
detected.

If an estimate of the peptide-specific sensitivity of the
mass spectrometer were possible, this would allow the use
of label-free techniques for absolute quantification. For
this, different machine learning techniques have been
proposed. Lu et al. [12] estimate the detectability of pep-
tides for the APEX method, i.e. the probability of a peptide
being observed in a spectrum at all. The authors evaluate
different classifiers for this purpose, and find that bagging
with a forest of random decision trees produces the best
results. The predicted values are then used to enhance the
spectral counts-based, uncorrected abundance estimation
by about 30%. Tang et al. [13] use two-layer neural net-
works to classify peptides into detectable and undetecta-
ble. They derive a Minimum Acceptable Detectability for
Identified Proteins (MDIP), a cutoff value that maximizes
the sum of true positives and true negatives. The MDIP is
shown to increase as protein abundance decreases, which,
according to the authors, could be utilized to improve
quantification. For both studies, data is acquired using LC
coupled to ESI. Mallick et al. [14] introduce the term pro-
teotypic for peptides that are observed in more than 50%
of the spectra they are expected in. The authors classify
peptides from four different MS setups (PAGE-MALDI,
PAGE-ESI, MUDPIT-ESI and MUDPIT-ICAT) into proteo-
typic and non-proteotypic peptides using a Gaussian mix-
ture model, and achieve a cumulative accuracy of up to
90%.

Both Lu et al. [12] and Tang et al. [13] use predicted detec-
tion probabilities to correct peptide abundances. In both
cases, the authors utilize detection probabilities as if these
probabilities really were peak intensities. But for peak
intensity correction, it seems much more appropriate to
predict peak intensities directly. Gay et al. [15] classify pep-
tides into observed and unobserved ones and, in addition,
directly predict peak intensities via regression. Unfortu-
nately, this study is flawed by the fact that the same pep-
tides were used in the training and test sets, to make up for
the small size of the dataset.
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For our initial evaluation, we do not use MS measure-
ments of LC-separated peptides; instead, proteins are sep-
arated via 2D polyacrylamide gel electrophoresis (2D-
PAGE). Separated probes usually contain only a single
protein that is subsequently digested and analyzed by
MALDI Time of Flight (TOF) mass spectrometry. In this
experimental setup, given a correct preparation and only
one protein in the digested gel spot, all peptides in a spec-
trum have exactly the same abundance. Therefore, the
peptide-specific sensitivity of the mass spectrometer can
be accessed by comparing peak intensities in every such
spectrum. A peptide-specific correction factor can then be
calculated by dividing one over the corresponding peak
intensity. It is understood that one cannot experimentally
determine the peptide-specific sensitivity for all possible
peptides.

In this study, we investigate if peak intensities of peptides
in MALDI-TOF MS spectra can be predicted with machine
learning (ML) techniques. We do not predict the probabil-
ity of a certain peptide to be detectable but instead predict
its normalized peak intensity directly. This is an important
step to facilitate the enhancement of label-free quantifica-
tion accuracy. We reach a prediction accuracy of r = 0.66
for across-dataset prediction, where r is the Pearson corre-
lation between predicted and observed intensities. Our
datasets stem from 2D-PAGE separated proteins, but
clearly, our results can directly be applied to enhance the
quantification accuracy of MALDI-based LC-MS experi-
ments [9-11]. A study by Mallick et al. [14] shows that a
slightly simpler problem, the prediction of proteotypic
peptides, can be done successfully for LC-MS experiments.
We are therefore hopeful that regression approaches like
the one proposed here may be successful for LC-MS data,
too.

Let s be the sequence of a peptide we have identified, and
let I be the intensity of the MS peak corresponding to this
peptide. Instead of directly using I as an estimate for the
relative peptide concentration, we apply ML to compute a
predicted intensity pI(s) of the peptide solely from the
peptide sequence. We can now calculate a corrected pep-
tide intensity I' = 1/pI(s)·I that replaces I in subsequent
steps of the analysis. Here, 1/pI(s) is the peptide-specific
correction factor. If the peak intensity estimate pI(s) is
accurate then I' is a better estimate than I of the relative
peptide concentration.

Methods
We use two sets of MALDI-TOF mass spectra to generate
the datasets for this study. These were measured on a
Bruker Ultraflex instrument (Bruker Daltonics, Bremen,
Germany) using proteins extracted from Corynebacterium
glutamicum [16]. The proteins were separated by 2D gel
electrophoresis, then digested into peptide fragments with

trypsin prior to MS analysis. The corresponding peptide
sequences were derived from protein identification using
MASCOT peptide mass fingerprinting [17] and an in-
house database containing C. glutamicum protein
sequences. For the smaller dataset A, both the selection of
spectra and determination of search parameters for the
MASCOT identification were done manually, while for
dataset B, both were done automatedly.

For dataset A, spectra were manually selected from a pre-
viously unpublished set of spectra. Search parameters
were chosen manually by an expert and included fixed
(carbamidomethylation of cysteine) and variable modifi-
cations (oxidation of methionine), and no missed cleav-
ages were allowed. The list of spectra was filtered for the
20% of spectra with the best MASCOT score and the larg-
est difference from the second best hit, resulting in 62
spectra being used for further analysis. Of 27 identified
proteins, 15 were present in multiple spectra. For dataset
B, spectra were run through fully automated MASCOT
peptide mass fingerprinting search with 42 different sets
of search parameters. These included with and without
oxidation of methionine, tolerance within {50, 100, 150,
200, 250, 500, 750} ppm, and up to {0, 1, 2} missed
cleavages allowed. The resulting list was filtered automat-
ically to fulfill the following properties: a) protein mass in
range [8000, 12000] Da, b) pI between 4 and 7 because of
the 2D gel used, c) highest MASCOT protein hit score
above 65, and d) sequence coverage above 15% using the
search parameters that produced the highest score. Spectra
with more than one high-scoring hit were also removed.
Application of this protocol left 182 spectra for further
analysis. Of 125 identified proteins, 35 were present in
more than one spectrum. To summarize the differences, A
can be considered a small, carefully chosen dataset while
B is larger and of lesser overall quality. An overview table
can be found in additional file 1: datasets and a histogram
showing the number of spectra per protein in additional
file 2: spectranumbers. The additional files 3 and 4:
dataset_a_protein_list and dataset_b_protein_list show
lists of the identified proteins. We give a short outline of
our spectra preprocessing pipeline; details are deferred to
additional file 5: preprocessing). After de-noising with a
Savitzky-Golay filter [18], baseline correction, and
removal of noise peaks, peak intensities are extracted from
the spectra. We unfold isotopic distributions by adding up
all peak intensities of isotope peaks that belong to the
same peptide. The resulting list of peaks is matched
against masses calculated from a theoretical tryptic diges-
tion. The matching of sequences to peaks is straightfor-
ward in this case because the peptide sequences are
known. We ignore missed cleavages and variable modifi-
cations in the matching process. We allow for a mass error
of up to 1 Da to make up for calibration errors. In case of
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multiple peaks inside the allowed mass error range, the
one closest to the theoretical mass is chosen.

In dataset A, for 371 out of 535 expected peptides, we
detected the corresponding peak in the mass spectrum. In
dataset B, 1023 out of 1994 predicted peaks were
detected. For most peptide sequences, only one peak
intensity measurement exists: in dataset A, 49.2% of pep-
tide sequences are unique, whereas in dataset B, this is
true for 70.2% of the peptides.

Abundances differ between spectra. To use intensities
from different spectra together in one dataset, we need to
normalize them. Since the amount of protein in each
spectrum is unknown, we introduce two normalizations
for peak intensities. We compare the performance of both
normalizations in our experimental evaluation.:

• Normalization by corrected mean ion current (mic). The
intensity of a peak p is scaled by the mean ion current, i.e.
the mean of all baseline-corrected measurements C1,...,CN
in the spectrum:

where Ip denotes the raw intensity of peak p after peak
extraction. Here, index i runs over all raw values (i.e. not
only peptide peaks) of the spectrum the peptide was
found in. By doing so, we take into account intensities of
unmatched peptides as well as differences in the overall
sensitivity of the detector.

• Normalization by sum of peptide peak intensities (sum). The
intensity of a peak p is scaled by the sum of all matched
peptide's peak intensities i = 1,...,P to yield

where Ii denotes the intensity of the ith peptide peak after
peak extraction. A similar approach has been used by
Radulovic et al. [19]. The factor 1000 is used for numerical
reasons.

Some peptides are present in more than one spectrum
and, hence, these peptides show more than one peak
intensity value. Most learning architectures do not cope
well with different target values per input.

Therefore, we calculate an α-trimmed mean with α = 50%
for peptides with more than three target values, and a
mean for peptides with two or three target values. As we
will see below, this also allows us to estimate the potential

prediction accuracy. As a final preprocessing step, we log-
arithmize intensities with a natural logarithm such that
the resulting error becomes additive, which stabilizes the
variance [1,20,21], and the values themselves become
approximately normal distributed (see Q-Q plots in addi-
tional file 6: qqplots).

We can now state the peak intensity prediction problem as
a supervised learning problem. A training set Γ = {(x, y)j, j
= 1,..., N} consists of input-output pairs (x, y) where x ∈
�t is an input peptide feature vector, and y ∈ � is the nor-
malized intensity we want to predict (target value). Obvi-
ously, this is a (nonlinear) regression problem and a wide
range of techniques can be applied.

When calculating target intensities for each peptide, we
assume that all proteins were correctly identified, we
assume perfect digestion, and we ignore variable modifi-
cations for all steps following identification. We are aware
that this is not perfectly true in reality: There are a few
missed cleavages, variable modifications were found dur-
ing the database search, and we can not totally exclude the
possibility of misidentification, even though MASCOT
thresholds were chosen to practically exclude this case. In
this sense, our datasets can be seen as "imperfect" and
cleaner datasets could be used. But if intensity prediction
is possible using this imperfect, partly erroneous and
noisy data, results will only improve when cleaner data-
sets are available. To show that we in fact learn to predict
intensities from peptide sequences, we shuffled the
assignment of peptide sequences to target values and
found that no prediction is possible for the shuffled data-
set; see below.

The same arguments hold for the effect of ion suppression
[22]: the signal of a compound is suppressed in the pres-
ence of other compounds that compete for ionization.
Intensity prediction could take this effect into account if
each peptide occurred in multiple spectra with all possible
combinations of other peptides, and if there was no con-
tamination. However, such a dataset is impossible to
acquire. Knowing this, we neglect the fact that peptide
peak intensities depend not only on the peptide's consti-
tution, but also on the combination of other peptides
present. We consider this effect an additional noise com-
ponent our method has to cope with. In any application
of our method, this effect would always be unknown, and
we aim at a realistic estimation of the performance of our
method.

Machine learning methods
We selected two complementary non-linear regression
architectures. ν-Support Vector Regression (ν-SVR) [23]
has excellent generalization abilities and copes well with
high-dimensional input data [24]. However, it is difficult
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to interpret its models, and parameter-tuning can be time-
consuming. The second learning architecture, the Local
Linear Map (LLM) [25] is less accurate if applied to higher-
dimensional feature spaces but is very efficient (i.e. fast
training and adaptation to addition data, and low mem-
ory-usage). It is more transparent and can be used for pep-
tide prototyping as shown in [24]. Both architectures
represent different principles of learning non-linear
regression functions. There exist cases where a linear
model outperforms more sophisticated regression mod-
els. Therefore, we apply a simple linear model (LM) [26]
for comparison. Other methods have been tested and per-
form similarly to or worse than those presented here (data
not shown).

ν-Support Vector Regression (ν-SVR)

Support vector machines are a class of learning algorithms
that are designed to implicitly transfer input feature vec-
tors into a high-dimensional feature space where classes
are linearly separable and the optimal linear decision
boundary can be calculated. In practice, however, it
depends on the choice of a kernel function and the data
whether linear separability is actually achieved. For sup-

port vector regression, the ε-insensitive loss function |y -

f(x)|ε = max {0, |y - f(x)| - ε} was introduced by Vapnik et

al. [27]. Here, errors are only considered if they are higher

than ε for some fixed ε > 0. Since the choice of an appro-

priate ε can be difficult, the ν-SVR introduced by Schölko-

pf et al. [23] finds the best ε automatically by minimizing

a cost function. Instead, ν, an upper bound of the number
of allowed errors and a lower bound to the number of

support vectors, has to be chosen a priori. The ν-SVR gen-
eralizes an estimator for the mean of a random variable
discarding the largest and smallest examples (a fraction of

at most  of either category), and estimates the mean by

taking the average of the two extremal values of the
remaining examples. This results in good robustness of

the ν-SVR. Other parameters that have to be chosen are

the regularization parameter C and kernel width γ. Param-
eter C controls the trade-off between the weight of errors
and the complexity of the regression function. Parameter

γ controls the width of the radial basis function

, which we use as kernel function. We

use the libsvm implementation of the e1071 package
available for R [28,29].

Local Linear Map (LLM)
Local Linear Maps [25], a type of artificial neural net, com-
bines an unsupervised vector quantization algorithm

based on Self-Organizing Maps (SOM) [30] with super-
vised linear learning principles for prediction of peak
intensities. The LLM can learn global non-linear regres-
sion functions by fitting a set of local linear functions to
the training data. It has been successfully used for peptide
prototyping [31] and provides a basis for peptide feature
profiling and visualization.

Motivated by the SOM, an LLM consists of a set of nl regu-

lar ordered nodes vi, i = 1,...,nl, which are connected to

each other via a two-dimensional grid structure, defining
a neighborhood between the nodes and a topology in fea-
ture space. Each node consists of a triple

. The vectors  are used to

build prototype vectors adapting to the statistical proper-

ties of the input data . The vectors 

approximate the distribution of the target values

. The matrices  are locally trained

linear maps from the input to the output space.

In the unsupervised training phase, the prototype vectors

 are adapted following the SOM learning rule: the

vectors  are pulled towards the input pattern xξ
according to the distance between the input pattern and

the corresponding closest prototype in input space 

with . The learning procedure

changes the weights according to a Gaussian neighbor-

hood function hσ with width σ decreasing over grid dis-

tance rk(x, nl):

The learning step widths , e, e A, eout ∈ [0; 1] for updating
neighbors and s are decreased during training. After adapt-
ing the prototypes, a classification can be applied by
assigning every input vector x to its closest prototype.

After unsupervised adaptation and tessellation of the
input space, an input feature vector is mapped to an out-
put by the corresponding local expert:

The weights  and the linear map Ai are changed iter-

atively by the gradient descent learning rules:
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The concept of approximating nonlinear functions by fit-
ting simple models to localized subsets of the data is
related to other regression approaches like Locally-
Weighted Regression (LOESS) [32] and to radial basis
functions (RBF) [33]. Hastie et al. demonstrated the use-
fulness of locally linear function fitting as well [34]. We
use here our own implementation of LLM as an R package.

Linear model (LM)
A linear regression model assumes the data to have the
structure y = XTb, which corresponds to data lying on a
straight line. Here, X is the input data in matrix formula-
tion, y the vector of target values, and b a vector of coeffi-
cients that have to be found when adapting the model to
the data. The ordinary least squares (OLS) algorithm is
applied to find the coefficients. OLS minimizes the
squared differences (errors) between the model's output
and the target values of the training examples.

Feature extraction
We cannot directly use peptide sequences as input for the
learning architectures, and derive numerical feature vectors
xj to represent molecular features of peptide j. In bioinfor-
matics, peptides are usually represented as strings over the
alphabet of amino acid characters. However, a biochemist
is more interested in the chemical properties of a peptide
to characterize it. These paradigms motivate different fea-
ture sets:

• A 20-dimensional feature set with only single amino
acid counts (mono).

• A purely sequence-based 9220-dimensional sequence
feature set (seq). Each peptide is mapped to the 9220-
dimensional vector by counting how often a certain k-mer
appears in the sequence. Each feature vector contains 20
counts for all single amino acids (like mono), 400 counts
for all di-peptides, 8000 counts for all tri-peptides, and
two times 400 counts for terminal di-peptides at the
beginning and end of the peptide sequence. Additional
file 7 (substringfrequency) shows the frequency distribu-
tion of di- and tri-peptide strings in the used datasets.
Here, "di-peptides" or "tri-peptides" refer to substrings of
the peptide sequences, not to single molecules consisting
of two or three amino acids. We will show below that the
pure sequence-based feature set is often not sufficient for
a decent prediction of peak intensities, what motivates the
use of the next feature set.

• A 531-dimensional chemical feature set (aa) computed
from amino acid attributes. Attributes are taken from the
amino acid index database [35]. Each amino acid index AA
= (AA1,...,AA20) consists of twenty real values for the

twenty amino acids. Let m(s) be the number of occur-
rences of the amino acid s in the amino acid index. For a
peptide S = s1...sn, the value for the corresponding feature

f is calculated as the sum of attribute values,

. This value reflects the overall property

of the peptide. There are 516 attributes in the amino acid
index database, therefore we can calculate 516 such fea-
tures. In addition, we use features for peptide length,
mass, and numbers and fractions of acidic, basic, polar,
aliphatic, and arginine residues. Finally, three features for
gas-phase basicity are added to the feature vector: a) The
estimated gas-phase basicity is calculated as proposed by
Zhang et al. [36] as well as b) a sum over the residual val-
ues of the amino acids that were used for this estimation,
and c) that sum scaled with the length of the peptide.

In the course of our analyses, we also evaluate what fea-
tures are particularly important for the task of predicting
peak intensities. This leads us to the following feature set:

• A reduced feature set resulting from forward stepwise
selection on aa and seq. This selected subset feature set
(sss) is 18-dimensional; its features can be found in Table
1. The following section explains how they were chosen.

All features are centered and normalized by variance prior
to training. Datasets and feature vectors are available from
ftp://ftp.cebitec.uni-bielefeld.de/pub/blind/
PeakIntensityPrediction_Data.tgz. Raw data and identifi-
cations are available from ftp://ftp.cebitec.uni-bielefeld.d
e/pub/blind/PeakIntensityPrediction_RawData.tgz.

Feature selection

Often, accuracy, speed, and interpretability can be
increased by reducing the number of features. To select a
few features out of hundreds, we apply a simple greedy
selection method as follows: a forward stepwise selection
as described in [37] (section 3.4) was applied twenty
times to the aa and seq feature set of dataset A (mic). This
method starts with the intercept and calculates a value

 for each feature i, where e is the predic-

tion error of a 10-fold cross-validation with the ν-SVR on
the current model and e+ the prediction error of the model

with the additional feature i. N denotes the number of
training examples, and k the number of features in the
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Table 1: Features constituting the sss feature set

feature ID explanation selected

GB500 Estimated gas-phase basicity at 500 K (Zhang et al., 2004) 20
VASM830103 Relative population of conformational state E (Vasquez et al., 1983) 11
NADH010106 Hydropathy scale (36% accessibility) (Naderi-Manesh et al., 2001) 9
FAUJ880111 Positive charge (Fauchere et al., 1988) 6
WILM950102 Hydrophobicity coefficient in RP-HPLC, C8 with 0.1%TFA/MeCN/H2O (Wilce et al. 1995) 6
OOBM850104 Optimized average non-bonded energy per atom (Oobatake et al., 1985) 2
mass Molecular mass of the peptide -
KHAG800101 The Kerr-constant increments (Khanarian-Moore, 1980) -
NADH010107 Hydropathy scale (50% accessibility) (Naderi-Manesh et al., 2001) -
ROBB760107 Information measure for extended without H-bond (Robson-Suzuki, 1976) -
FINA770101 Helix-coil equilibrium constant (Finkelstein-Ptitsyn, 1977) -
ARGP820102 Signal sequence helical potential (Argos et al., 1982) -

R No. of arginine residues 20
F No. of phenylalanine residues 20
M No. of methionine residues 17
Q No. of glutamine residues 5
Y No. of tyrosine residues 4
H No. of histidine residues -

The "selected" column shows the number of times out of twenty runs of a forward stepwise selection that selected the corresponding feature. 
Hand-picked features are printed in bold face. Feature selection on the aa (above the separating line) and seq (below) feature set were done 
independently of each other. The seq feature set fully includes mono. No di- or tri-peptide string was selected consistently.

Within-peptide variances of target valuesFigure 1
Within-peptide variances of target values. Scatter plots and correlation coefficients depicting the within-peptide peak 
intensity variance between runs for all peptides of both datasets (left: dataset A, right: dataset B). The recorded correlations can 
be considered as upper bounds of the achievable prediction performance if single measurements are used. The corresponding 
plots with trimmed mean values can be found in the additional file 7: tmbetweenpeptidecorrelation.
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smaller model. The feature that gives the highest value Fi

is added to the model before the next iteration. The proce-
dure is repeated until no feature produces an Fi that is

higher than the 95th percentile of the F1,N-k-2 distribution.

For the ν-SVR, we used the parameters chosen by the grid
search on the full feature set, since it is infeasible to repeat
a grid search for each selection step. The resulting feature
set depends on random partitioning during 10-fold cross-
validation. Thus, each application of the selection algo-
rithm can produce a different feature set. We selected

those features that were selected most often (≥ 5 out of
20), reviewed the chosen features, and added others that
might also be important for peptide-specific sensitivity of
a mass spectrometer.

Evaluation techniques
To evaluate correlation coefficients recorded in the fol-
lowing, we want to estimate how good our prediction
accuracy can possibly get. To do so, we analyze the varia-
tion of intensity values for each peptide. Recall that many
peptides are present in more than one mass spectrum, and
one peptide sequence may correspond to multiple peak
intensity values. If we compute the correlation of normal-
ized intensity values for all peptides with multiple values,
we find a correlation coefficient of r = 0.81 for dataset A,
and r = 0.59 for dataset B (Fig. 1). To generate training
data for our learning approaches, we compute target val-
ues as the trimmed mean of intensities for peptides with
more than three observations, which reduces the effect of
outliers. Comparing the target values of each peptide
sequence to its trimmed mean for all peptides with multi-
ple target values, we record a correlation coefficient of r =
0.92 for dataset A and r = 0.82 for B. The corresponding
scatter plots are shown in additional file 8: tmbetween-
peptidecorrelation. Since we use trimmed mean intensi-
ties as input, these correlation values can be interpreted as
"upper bounds" for correlation coefficients any machine
learning technique may achieve using this data. We are
confident that for other datasets, even better prediction
accuracies are possible.

We determine the best parameter set for each regression
model using 10-fold cross-validation. We make sure that
the ten sets contain disjunct peptide sequences. A grid
search over the parameter space is performed to determine
optimal parameters. The 10-fold cross-validation is
applied for each parameter set. The best parameter set is
the one with highest mean Pearson correlation coefficient
(r) between target and predicted value over all ten test sets.
The mean squared error (MSE) has also been calculated.
However, it is not comparable between datasets without
additional normalization, whereas the Pearson correla-
tion coefficient is independent of the scale used. In addi-

tion, in this case, the parameter set with the lowest MSE is
always the same as the one with the highest r, or very close
to it.

For ν-SVR, the grid search runs over C ∈ {e-3, e-1,...,e13}
and γ ∈ {e-13, e-11,...,e5} in steps of e2, and ν ∈ {0.2,
0.3,...,0.8} in steps of 0.1. The parameters sampled by the
LLM are prototypes n ∈ {1, 2, 3, 6, 10, 15, 25}, width of
the neighborhood function σ ∈ {5, 2, 1, 0.4}, linear vs.
exponential decrease of learning step size, and number of
learning iterations t ∈ {10, 50}.

The final model is built by retraining the whole dataset
with the optimal parameter set determined in the model
selection step. Since the parameters may be adapted to the
data used for cross-validation, we estimate the perform-
ance on new data by validating the prediction accuracy on
the other dataset: The model trained on A is validated on
B, and vice versa. Both datasets have 193 peptides in com-
mon, therefore we also validate across datasets with these
193 peptides excluded. The MSE of this across-dataset val-
idation can be reduced by normalizing by variance and
centering the data. Pearson's correlation coefficient is not
affected by such operations.

Results and discussion
In order to assess the methods described above, we per-
formed a series of experiments testing various aspects. We
compare the prediction performance of three types of
learning architectures on two different MS datasets for
four different feature sets. Performance is evaluated via
10-fold cross-validation, and we assess the generalization
performance by predicting each dataset with a model
trained on the other dataset. Prediction results for mic nor-
malization are shown in Table 2. We first present results
on the best performing predictors and then analyze the
influence of the individual components in more detail.

Best performance
The normalization by corrected mean ion current (mic)
generally has a slight advantage over the normalization by
sum of peptide peak intensities (sum), while other obser-
vations were identical for both normalization types.
Therefore, results and scatter plots for sum normalization
are deferred to additional files. See Table 3 for a summary
of all additional files with scatter plots.

Among all combinations, the best prediction result is
achieved using the ν-SVR algorithm on dataset A with mic
normalization and the mono feature set (single amino acid
counts), shown in Fig. 2. Here, 10-fold cross-validation
yields an overall correlation of r = 0.68. In the across-data-
set validation, the correlation coefficient is only slightly
reduced to r = 0.66, or r = 0.61 when peptides present in
both datasets were excluded. ν-SVR, using chemical (aa)
Page 8 of 18
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or selected subset (sss) feature sets results in prediction
accuracy almost as good as for the mono feature set; see
Table 2, as well as additional files of A and B scatter plots
referred to in Table 3. These correlations are significant
and show that we can predict peak intensities with statis-
tical learning methods.

To show that predicted values are an actual signal related
to peptide sequences, and not some random pattern the
learning machines find in the data, we randomly shuffle
the assignment of peptide sequences to peak intensities.
No good correlation can be observed in cross-validation
when evaluating shuffled datasets: From dataset A we gen-
erated 100 datasets with randomly permuted target val-
ues. For each of the 100 shuffled datasets, we trained a ν-
SVR with sss features and parameters optimized using
another shuffled dataset. The best correlation with this
dataset was r = 0.20. For the 100 datasets, we reach a mean
correlation coefficient of r = -0.14. None of the shuffled
datasets generated for a good correlation coefficient
(standard deviation below 0.044). See Fig. 3 for an exem-
plary scatter plot. This is a clear indication that we are
picking up the true signal, that is, the predicted intensities
are correlated to the peptide sequence.

The scatter plots of target vs. predicted values in Fig. 2 are
typical for dataset A. The cross-validation plot shows a
point cloud that is almost diagonal and shows considera-
ble spread especially for low values. The across-dataset
prediction plot (right side of Fig. 2) shows that values of
A are systematically predicted too high when the model
trained and parameter-tuned on dataset B is used. An
analysis of the statistical properties of the target values of
both datasets reveals that B has a higher mean and its dis-
tribution is more skewed towards higher values. This dif-
ference can be explained by the fact that both datasets
were wet-lab processed by different persons, dataset B by
multiple persons even, and they were analyzed with dif-

Table 2: Overview of Pearson's correlation coefficients using mic 
normalization

validation dataset feature set ν-SVR LLM LM

10-fold CV A aa 0.66 0.52 0.60

sss 0.66 0.67 0.51

mono 0.68 0.64 0.52

seq 0.57 0.34 0.34

B aa 0.53 0.46 0.49

sss 0.55 0.53 0.49

mono 0.47 0.53 0.48

seq 0.44 0.27 0.41

across datasets A aa 0.65 0.52 0.14

sss 0.63 0.59 0.47

mono 0.66 0.57 0.45

seq 0.46 0.21 0.40

B aa 0.45 0.24 0.01

sss 0.50 0.44 0.39

mono 0.45 0.39 0.32

seq 0.32 0.05 0.28

A aa 0.58 0.47 0.00

sss 0.58 0.55 0.41

mono 0.61 0.52 0.39

across datasets seq 0.37 0.21 0.22

without duplicates B aa 0.44 0.42 0.00

sss 0.53 0.46 0.40

mono 0.46 0.44 0.32

seq 0.32 0.00 0.03

Values "0.00" indicate that the correlation coefficient was in the range 
(-0.005,0.005). The best value in each section is printed in bold face.

Table 3: Summary table for additional scatter plots

DS normalization ν-SVR LLM

10-fold CV A sum additional file 10: asumsvrcross additional file 11: allmcross
mic additional file 12: amicsvrcross additional file 11: allmcross

B sum additional file 13: bsumsvrcross additional file 14: bllmcross
mic additional file 15: bmicsvrcross additional file 14: bllmcross

across datasets A sum additional file 16: asumsvrvalidation additional file 17: allmvalidation
mic additional file 18: amicsvrvalidation additional file 17: allmvalidation

B sum additional file 19: bsumsvrvalidation additional file 20: bllmvalidation
mic additional file 21: bmicsvrvalidation additional file 20: bllmvalidation

This table summarizes the scatter plots available as additional files, and in which file a certain plot can be found. The LLM scatterplots for the seq 
feature set as well as all LM scatter plots are not been included because the results (correlation values) are poor. "DS" abbreviates "dataset".
Page 9 of 18
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ferent settings of the mass spectrometer. In applications of
our method, an additional normalization step should be
applied that accounts for these differences.

Dependence on peak intensity
The most reliable prediction for both datasets is achieved
with slightly above intermediate intensities. Low target
values have the highest prediction error (Fig. 4). Note that
there is a large number of samples with small target values
in our training sets, so this effect cannot be attributed to
undersampling, meaning that low intensities are more
difficult to predict. Note that we predict the logarithm of
intensities, whereas noise in the mass spectra is additive
and, hence, will have a stronger effect at low intensities.
Also, noise in regions of lower intensities behaves differ-
ently from that of higher intensities [21]. The problem
might be overcome when more measurements for each
peptide become available. Otherwise, the use of two or
more different models specialized for different intensity
ranges might overcome this problem.

Dependence on the learning architecture
Of all the learning architectures ν-SVR gives the best
results in all cases, and the LLM's performance is compa-
rable in the cross-validation and slightly worse in the gen-
eralization case (Table 2). Where data becomes available

gradually during experiments, we suggest applying the
LLM in early stages: it is faster to train than the ν-SVR and
can be adapted with additional data without time-con-
suming complete retraining. When enough data has been
collected and results begin to stabilize, the ν-SVR should
be used to obtain a final prediction model. The LM shows
bad overfitting: It beats the LLM for the aa feature set in
the cross-validation, but shows absolutely no correlation
when generalizing to new peptides, and only very little
correlation for the lower-dimensional feature sets. This
suggests a non-linear relationship between feature vectors
and the target values for any of the peptide representa-
tions.

Influence of features sets
A comparison of different feature sets shows that the mono
and sss feature sets generally lead to similar prediction
results, the sss feature set having a slight advantage in
more cases than the mono set. Thus, our feature selection
increases accuracy slightly for most cases. For the 531-
dimensional aa feature set, only the ν-SVR successfully
extracts the relevant information to achieve comparable
prediction accuracy. For the other learning algorithms, the
high dimensionality with some features being highly cor-
related to each other, leads to bad generalization perform-
ance, i.e. inability to predict intensities for new peptides.

Scatter plot target vs. predicted valuesFigure 2
Scatter plot target vs. predicted values. Prediction results for dataset A with the ν-SVR indicate that peak intensity pre-
diction is feasible. Left: Cross-validation on dataset A. Right: Prediction using a model parameter-tuned on dataset B. r denotes 
the Pearson's correlation between target and predicted values. Plots for dataset B and the other feature sets are shown in addi-
tional files. A summary of all additional files showing scatter plots is presented in Table 4.
Page 10 of 18
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The sparse 9220-dimensional seq feature set performs
worse than any other feature set. While, in principle, this
feature set captures more information about amino acid
order, it is inappropriate for our small training datasets.
This is a general problem: there are indications that not
only the amino acid frequencies but also their order deter-
mine peak intensities. However, the amount of informa-
tion necessary to capture this relationship explodes. Even
if the amino acid order is encoded only partially, as in this
case, more training data is needed.

Analysis of the selected features
The features selected most often in the feature selection
on dataset A were the estimated gas-phase basicity at 500
K (GB500), the absolute number of arginine residues
(arginin_count), the relative population of conforma-
tional state E (VASM830103 [38]), the hydropathy scale

based on self-information values in the two-state model at
36% accessibility (NADH010106 [39]), the hydrophobic-
ity coefficient in RP-HPLC, C8 with 0.1%TFA/MeCN/H2O
(WILM950102 [40], and the number of positive charges
(FAUJ880111 [41]) of the aa feature set. From the seq fea-
ture set, the numbers of arginine (R), phenylalanine (F),
and methionine (M) residues were selected most often.
Table 1 shows the exact numbers. Details of the results of
the forward stepwise selection (selected features and per-
formance values) can be found in additional file 9: step-
wise selection.

Forward stepwise selection is a greedy method and does
not find an optimal solution. None of the selected sets
from each single run of the method leads to better per-
formance than that of the original aa set. Thus, we add in
other features that extend the description of the peptide.

Prediction results with randomly shuffled sequencesFigure 3
Prediction results with randomly shuffled sequences. When assigning randomly shuffled sequences to the target values 
of dataset A, prediction by ν-SVR shows no correlation in 10-fold cross-validation. This indicates that we are picking up the 
true signal, i.e. the predicted values are correlated to the peptide sequence.
Page 11 of 18
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We access the importance of the single features that con-
stitute the final sss feature set using random forests for
regression [42,43]. Fig. 5 visualizes the percentage
increase of the prediction error if values of the corre-
sponding feature are randomly permuted. According to
this, VASM830103 is the most important feature, fol-
lowed by GB500 and the peptide's theoretical mass.

In general, the automatically selected features are of
higher importance than hand-picked ones (Fig. 5). Of the
hand-picked features, the mass and Kerr-constant incre-
ments (KHAG800101 [44]) show the highest increase in
error, i.e. are most important.

The high importance of VASM830103 indicates that the
amino acids' conformation might play a role for peptide-
specific instrument sensitivity. However, not much is
known about the conformation of peptides after tryptic
digestion, when crystallized within the matrix, or as ions
in gas-phase. Looking at the chemistry, it makes sense that
the gas-phase basicity influences ionization efficiency.
The number of positive charges have been reported by
Mallick et al. to be relevant for the probability of observing
a peptide ion [14]. The latter has often been chosen in the
feature selection but is the least important one in the sss

feature set according to our feature importance accession.
The number of histidine residues (H) has been found to
be correlated with detection probabilities in MALDI MS
by Mallick et al.. It is the only basic residue except for K
and R, presumably making a difference, though weakly, in
basicity for tryptic, i.e. already quite basic peptides. How-
ever, it is one of the three least important features accord-
ing to the random forest method in our dataset. We can
exclude the correlation (r = 0.922) between H and
FAUJ880111 as the cause of their low importance: the
importance ranking is the same if one of both is left out
completely. The hydrophobicity features (WILM950102,
NADH010106) are of intermediate importance. Since all
except a few peptides in the studied datasets are tryptic, i.e.
have lysine (K) or arginine (R) as the C-terminal amino
acid, the R feature value almost always indicates whether
the peptide string ends in R or not. In the latter case, it
most certainly ends in K. The feature R is highly correlated
with the GB500 value: the estimated gas-phase basicity
takes on values distributed around three levels, which cor-
respond to peptides ending in R (highest), those ending in
K, and those that have neither. Nonetheless, both features
seem to be complementary according to our results.

Analysis of absolute prediction errorFigure 4
Analysis of absolute prediction error. Plot of target value vs. prediction error. Data was pooled into 20 bins according to 
their target values. For each bin, the mean absolute prediction error is plotted on the left y-axis. Then the number of values 
falling into the corresponding bin is shown with squares on the right y-axis. The lowest error is achieved for intermediate tar-
get values, the highest error occurs for low ones. The absolute error is not correlated to the number of values per bin. Thus, 
intensities within a certain range are more difficult to predict than others.
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Feature importanceFigure 5
Feature importance. Plot of percentage increase of the prediction error if the corresponding feature is randomly permuted, 
using random forests for regression [42]. Of all features in the sss feature set, the relative population of conformational state E 
(VASM830103, [38]), the estimated gas-phase basicity (GB500, [36]), and the theoretical mass lead to the highest increase of 
the error if the peptide's values are permuted. The number of positive charges (FAUJ880111, [41]) and the number of 
glutamine residues (Q) are rated the least important features.
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Table 4: Two-sample t-test results

substring s p-value
μ( ) μ( ) size( ) size( )

R 2.41e-15 2.76 3.73 171 244
K 2.85e-14 3.72 2.78 243 172
M 1.69e-06 3.44 2.53 366 49
H 2.25e-05 3.20 3.90 338 77
VKe 4.64e-05 3.36 2.31 403 12
VK 8.92e-05 3.36 2.39 402 13
VF 1.25e-04 3.29 4.65 403 12
Y 2.11e-04 3.18 3.71 296 119
F 2.99e-04 3.15 3.67 272 143
GF 5.83e-04 3.29 4.48 400 15
Q 8.97e-04 3.16 3.61 260 155
GKe 0.001 3.37 2.62 392 23
TKe 0.001 3.36 2.45 401 14
SV 0.001 3.28 4.15 393 22
TK 0.003 3.36 2.53 400 15
GK 0.009 3.37 2.76 390 25
PR 0.009 3.30 4.51 403 12
PRe 0.009 3.30 4.51 403 12
DS 0.009 3.29 4.10 395 20

substring s p-value
μ( ) μ( ) size( ) size( )

R 4.12e-33 3.69 4.64 339 795
K 6.76e-31 4.65 3.74 770 364
M 3.72e-25 4.52 3.41 966 168
DK 3.80e-07 4.38 3.35 1112 22
DKe 1.18e-06 4.37 3.38 1113 21
GM 1.67e-05 4.38 3.23 1112 22
AKe 2.27e-05 4.39 3.64 1085 49
NKe 5.82e-05 4.38 3.42 1111 23
GRe 9.18e-05 4.31 4.93 1054 80
QRe 1.37e-04 4.33 5.10 1100 34
W 2.63e-04 4.40 3.93 1034 100
AK 2.75e-04 4.39 3.73 1083 51
NK 3.03e-04 4.37 3.51 1110 24
GR 6.16e-04 4.32 4.86 1051 83
QR 7.46e-04 4.34 5.01 1098 36
FRe 0.001 4.34 5.28 1111 23
IK 0.001 4.37 3.47 1113 21
IKe 0.001 4.37 3.47 1113 21
GKe 0.001 4.37 3.74 1104 30
GK 0.002 4.37 3.80 1101 33
DT 0.003 4.38 3.80 1083 51
AM 0.003 4.38 3.40 1108 26
S 0.004 4.47 4.25 538 596
P 0.006 4.25 4.46 579 555
TKe 0.008 4.37 3.76 1110 24
VRe 0.008 4.33 4.77 1069 65

Results of two-sample t-tests of set s+ (normalized intensities of peptides containing a substring s) against the set s- of those not containing it in the 
corresponding dataset (A or B). Only substrings that occur in more than 10 (A)/20 (B) peptides and with a p-value ≤ 0.001 are shown. An "a" as a 
prefix denotes that the substring is located at the beginning of the string, "e" as suffix means it is located at the end of the string. Otherwise, the 
substring can occur anywhere in the peptide (including terminal positions). Rows in bold face mark substrings that are present in the lists of both 
datasets.

sA
− sA

+ sA
− sA

+

sB
− sB

+ sB
− sB

+
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A two-sample t-test of the list of normalized intensities of
peptides containing a given mono- or di-, or tri-peptide
substring against the list of those not containing it can
show whether differences in the mean intensities between
these groups are significant. We apply this test to comple-
ment the information obtained by the forward stepwise
selection on seq. In this test, each substring is tested inde-
pendently of all others, whereas the forward selection
would not choose a substring if its effect is already covered
by another one. Details including p-values are given in
Table 4. The amino acid features number of arginine (R),
lysine (K), methionine (M), and the terminal di-peptide
GK show significant differences between their mean val-
ues for both datasets. Apart from GK, significant di-pep-
tides differ between both datasets and almost always
contain one of the aforementioned (R, K, M), so their
effect can be attributed to these single amino acids. In
dataset A, there are significant differences for histidine
(H), tyrosine (Y), phenylalanine (F), and glutamine (Q),
whereas none of these shows up in dataset B. Here, tryp-
tophane (W) containing peptides show a significant dif-
ference in the mean intensity instead. If unmatched
peptides are included with a target value of zero, the
amino acids threonine (T) and tryptophan (W) show a
significant difference for both datasets (data not shown).

Dataset dependence
Generally, dataset A gives much better results than B, even
though the latter is larger (see Table 2 as well as additional
files of A and B scatter plots referred to in Table 3). An
obvious reason is the higher within-peptide variance of
normalized intensities and the higher fraction of peptides
without replicate measurements in dataset B. Nonethe-
less, the algorithms are able to draw the main trends from
B, since A can be predicted with a model trained on B even
better than B itself (compare "across datasets" for A to
"10-fold CV" for B in Table 2). This shows that despite the
high variance in a dataset, the learning algorithms can
capture the main trends, thus enabling prediction of a less
noisy dataset.

Conclusion
The machine learning approach presented here is able to
predict peptide peak intensities in MALDI mass spectra,
thus showing that the prediction of sensitivity factors for
mass spectrometry based on chemical and sequence fea-
tures is feasible. Even for small datasets, significant corre-
lations can be achieved.

Although we have not yet evaluated our method against
uncorrected spectral counts and correction based on
detection probabilities, we believe that our method is bet-
ter suited for peptide quantification than the latter, since
we directly aim at predicting the reciprocal of the peptide-
specific instrument sensitivity. As the next step in our

research, we want to assess how predicted intensities affect
quantification accuracy. We will apply our method to pro-
tein mixtures of known concentrations to estimate how
well we can predict protein concentrations at the semi-
quantitative level. Also, the application of the method to
other ionization techniques, in particular data from elec-
trospray ionization (LC-ESI), is an obvious next step. We
are confident that we can improve prediction perform-
ance using larger datasets with more replicates. Regarding
additional features to be included for ML, features com-
prising conformational aspects of peptides appear very
promising. Due to the high computational costs, it will
have to be assessed whether the estimation of such fea-
tures is feasible for this application.
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Additional material

Additional file 1
Overview of dataset properties.No. duplicated proteins: number of 
proteins for which more than one spectrum is contained (detailed numbers 
in parentheses). No. matches: number of distinct peptides for which 
peaks are found in the spectra, considering only peptides without missed 
cleavages. No. non-matches: number of theoretical peptides for which no 
match was found. Duplicated peptides: percentage of peptides found in 
more than one spectrum. Modifications: peptide modifications consid-
ered in the peak matching procedure.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-443-S1.png]

Additional file 2
Histogram of the number of spectra per protein. More than 50% of the 
proteins in dataset B are presented by only one measurement.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-443-S2.png]

Additional file 3
Lists of the identified proteins. Identified proteins, their coding region, 
description, MASCOT score, and GenDB [45] ID.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-443-S3.pdf]
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Additional file 4
Lists of the identified proteins. Identified proteins, their coding region, 
description, MASCOT score, and GenDB [45] ID. Additional informa-
tion about the MASCOT search parameters that led to the highest score 
are included: coverage, number of peptides (found and overall), missed 
cleavages, mass tolerance, modifications, and the number of search 
parameter sets that led to the identification of the corresponding protein.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-443-S4.pdf]

Additional file 5
Raw spectra preprocessing and peak extraction details.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-443-S5.pdf]

Additional file 6
Q-Q plots for target values of both datasets. Intensities have been nor-
malized by mic and logarithmized. The target values of dataset B fit the 
normal distribution almost perfectly. Those of dataset A deviate from a 
normal distribution at both ends.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-443-S6.png]

Additional file 7
Number of times di-/tri-peptides occur in the seq feature set of dataset 
A. While a good portion of the dimers occurs more often than ten times in 
the whole dataset, most of the trimers do not show up at all or just once. 
In principle, the sequence feature set captures some of the amino acid 
order in the peptides. However, considerably more data is necessary to fill 
this feature space.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-443-S7.png]

Additional file 8
Scatter plots of duplicate normalized intensity values against 
trimmed-mean target values. The recorded correlations can be consid-
ered upper bounds of the achievable prediction performance if only multi-
ple measurements per peptide were used (left: dataset A, right: dataset B).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-443-S8.png]

Additional file 9
Details of the forward stepwise selection process. Features selected as 
well as performance values for each run of the forward stepwise selection 
process are shown in separate tables for selection in aa and seq.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-443-S9.pdf]

Additional file 10
Cross-validation scatter plots and Pearson correlations for dataset A 
(ν-SVR, sum normalization). Cross-validation scatter plots of dataset A 
with the ν-SVR (sum normalization)
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-443-S10.png]

Additional file 11
Cross-validation scatter plots and Pearson correlations for dataset A 
(LLM). Cross-validation scatter plots of dataset A with the LLM (normal-
ization: left: mic, right: sum)
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-443-S11.png]

Additional file 12
Cross-validation scatter plots and Pearson correlations for dataset A 
(ν-SVR, mic normalization).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-443-S12.png]

Additional file 13
Cross-validation scatter plots and Pearson correlations for dataset B 
(ν-SVR, sum normalization). Cross-validation scatter plots of dataset B 
with the SVR (sum normalization)
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-443-S13.png]

Additional file 14
Cross-validation scatter plots and Pearson correlations for dataset B 
(LLM). Cross-validation scatter plots of dataset B with the LLM. (normal-
ization: left: mic, right: sum)
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-443-S14.png]

Additional file 15
Cross-validation scatter plots and Pearson correlations for dataset B 
(ν-SVR, mic normalization).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-443-S15.png]

Additional file 16
Across-dataset prediction scatter plots and Pearson correlations for 
dataset A (ν-SVR sum normalization). Across-dataset prediction of 
dataset A with a model from B with the ν-SVR (sum normalization)
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-443-S16.png]

Additional file 17
Across-dataset prediction scatter plots and Pearson correlations for 
dataset A (LLM). Across-dataset prediction of dataset A with a model 
from B with the LLM (normalization: left: mic, right: sum)
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-443-S17.png]

Additional file 18
Across-dataset prediction scatter plots and Pearson correlations for 
dataset A (ν-SVR, mic normalization).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-443-S18.png]
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