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ABSTRACT

Given a matrix pair Z =(A, B), the perturbation of its eigenvalues (a, 8) is
studied. Considering two pairs Z, W as points of the Grassmann manifold G,, ,, and
its eigenvalues as points in G, ,, the projective complex plane, the distance of the
spectra, measured in the chordal metric in G| 4, is bounded by some distance of the
matrix pairs in G, ,,. Analogs of the Bauer-Fike theorem, Henrici's theorem, and
the Hoffman-Wielandt theorem are obtained, from which the * classical” results can be

derived.

0. INTRODUCTION

In this paper we shall treat the perturbation of the eigenvalues of the
generalized eigenvalue problem
BAx = aBx. (0.1)

Here A, B are complex n X n matrices, x a nonzero vector, and (a, B)=1(0,0)
a pair of complex numbers.
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In the case of the classical eigenvalue problem Ax = Ax, there is a series of
theorems which give bounds on the perturbation of the spectrum of A
depending on A and the norm of the perturbation of A. For citing these
results we introduce some notation. Let A and C have the eigenvalues A; and
Bis i=1,...,n, respectively. 5,(C)= max;min |p, — A | is the spectral varia-
tion of C with respect to A, and v(A,C)= min_ max;|A; — p,,), where 7
runs through the permutations of {1,...,n), is the eigenvalue variation of A
and C [3]. Let || || denote the usual Euclidean vector norm, || ||, the spectral
norm, and || || the Euclidean matrix norm.

Tueorem 0.1 (Bauer and Fike [1]). If A is diagonalizable, i.e. there
exists a nonsingular n X n-matrix T such that

A =Tdiag(A,,...,A, )T,
then

SA(C) < ITNMT YN A = Cl,.

Tueorem 0.2 (Henrici [3]). If A is the || ||,departure from normality of
A and A = 0, then

yo— B
1A=Cly’

s(C)s—L—ja-
A )<gn(y)|| Clls,

where g (x) is the inverse function of x + x2+ - -- + x" for nonnegative x.

If A is normal, then by Theorem 0.1
SA(C) <llA-CYl,,

but we have an even stronger resuilt.

, TreoreM 0.3 (Hoffman and Wielandt [4]). If A and C are both normal,
then

1/2
o(A,C)<min{ TN, =] <114~ Cly.

o 1‘;J"\r)fhat are the corresponding results for the generalized eigenvalue problem
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It is reasonable to consider an eigenvalue («, )= (0,0) as a point in the
projective complex plane G, , and measure the distance between two points
in the chordal metric

Vial® +181% {|d? +|B)2

p((a.B). (& 8)) =

(see e.g. [7], [8], [9]). ¥ Z = (A, B) is a pair of n X n matrices, identified with
the n X2n matrix Z, then obviously TZ = (TA, TB) for a nonsingular n X n
matrix T has the same eigenvalues and eigenvectors. Hence we consider
Z = (A, B) as an element of the Grassman manifold G, ,, of all n-dimensional
subspaces of the 2n-dimensional complex space C2" by identifying Z with the
linear subspace L, = {Z"x: x € C"} spanned by the row vectors of Z (see e.g.
[6], [12]). Here we use the obvious fact that for a regular pair (A, B) [i.e.
det(A + AB) # 0] the dimension of L is n.

If Z=(A,B), W=(C, D) are regular pairs, we use as a “distance”
dy(Z,W) the “gap” between the corresponding subspaces L, and L. Here
the “gap” is defined in the usual way as the norm of the difference of the

orthogonal projectors [5,8]. As those are given by

P,=ZH(zz#) 'z, P,=WH(WWH) 'w, (0.3)
we have the metric
do(Z,W) =Py — Py ll, = |2%(22%) "2 - WH(WWH) " ‘W, (0.4)
Besides this we use (see also {8]) the metric

dp(Z, W)=/} 1P, ~ Pylls. (0.5)

Note that for n = 1, the projective complex plane G, ,, d and d; coincide

with the chordal metric (0.2). .
We shall show in the sequel that there are corresponding theorems

replacing in (0.1)-(0.3) the distances between complex gumbers and matrices
by the chordal metric and d, or d respectively. For this purpose one has to
define “diagonalizable,” “normal,” and “departure from normality for ma-
trix pairs appropriately. o -
In Section 1 we give the abovementioned definitions an‘(‘i some l.>a51’c’
results. In the following sections we prove the corresponding *Bauer-Fike,
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“Henrici,” and “Hoffman-Wielandt” theorems. That these generalizations are
not just formal ones is shown in the last section. Here the theorems (0.1)—(0.3)
are derived by a limiting argument from the corresponding results for matrix
pairs. This papers is a continuation of [12] (by Sun alone), where some of the

following results (Theorem 2.2 in a special case, and Theorem 4.1) have been
proved in a different way.,

1. DEFINITIONS AND BASIC RESULTS
Let C, ,, denote the set of all n X m complex matrices.

DeriniTioN 1. Let A, BEC, ,.. A vector x € C,, x = 0, is an eigenvector
of the matrix pair (A, B) corresponding to the eigenvalue (a, 8), a, B €C, if

(a,8)=(0,0) and aBx = BAx.

DEeFINITION 2. A matrix pair Z = (A, B), A, BEC, , is called a regular
pair if det(A +AB)= 0. ’

It is easy to see that rank(A, B)= n in this case and that AA" + BBY =
ZZ" is a positive definite n X n matrix. Here, as in the following, we consider

Z as an element of C_ , .

DeFiniTioN 3. A regular matrix pair Z = (A, B) is called diagonalizable
if there exists a basis of C" formed from eigenvectors of Z. It is called normal
if there exists an orthonormal basis of eigenvectors.

For two regular pairs Z, W with eigenvalues (a,, 8,), and (y,, §,), respec-
tively, we define the generalized spectral variation of W with respect to Z by

SZ(W)= m‘a-x minp((ajs Bj)’ (Yivai))

J

and the generalized eigenvalue variation of Z and W by
v(Z,W)= mﬂin m?xP((ai’Bi)a (77(.‘)’ 6‘!’1’(:’)))’

where 7 runs through all permutations of {1,...,n}.
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Tueorem 1.1.  Suppose that Z=(A, B) is a regular pair. Then it is
diagonalizable if and only if there exist nonsingular S, T C... and diagonal
matrices A = diag(ay,...,a,), & = diag(B,,..., B,) such that

SAT=A, SBT =9. (1.1)

Proof. 1f (1.1) holds, then obviously the ith column ¢, of T satisfies ¢, = 0
and B, At; = a, Bt,. As Z is regular, det(A + AR) # 0 and hence («;, 8;) = (0,0).
This shows that the ¢, form a set of n linearly independent eigenvectors, and Z

is diagonalizable.
Suppose now that there exist n linearly independent eigenvectors ;:

a,Bt, =B At,, |a®+|B)2=0, i=1,..,n. (1.2)

Then the set of vectors

i

_l -
_ A i “‘*O’} i=1,....n (1.3)
BB, if B0,

1

is well defined. If T and R are the matrices the columns of which are the ¢,
and the r, respectively, then

AT=RA, BT=RQ (1.4)

- -1
hold, as is seen columnwise from (1.2) and (1.3). From Z-T I‘?( ATV Qr 1
and rank Z = n we get that R is nonsingular. Setting S= R " gives (L1). ™

Similarly one can prove

TrEOREM 1.2. A regular pair Z = (A, B) is normal if a'nd only if th'ere
exist a nonsingular matrix S, a unitary matrix U, and diagonal matrices

A = diag(a,), @ = diag(B,) such that

SAU=A, SBU=9 (1.5)

hold.

The following results refer to the metrics d, d defined in the introduc-
tion. Theorem 1.3 has been proved essentially in [11).
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Turorem 1.3. For given regular matrix pairs Z and W define the n X n
matrix

H(Z,W)=1-(ZZ¥) Y2 zwHwwH) 'wzH(zz") '/
Then H is nonnegative definite and
do(Z,W)=|H(Z,W)"?,. (16)
de(2,W)=|H(Z,W)"?,. (L.7)

Proof. Replacing Z,W by (ZZ#)~1/2Z and (WW ")~ V/2W respectively,
we may assume that ZZ" = WWH = [. The key observation is the following:
For each number p? the relation

(1 - ZWHWZHYZ - 2z =2[(2Z -WwHwW) = 21| (18)

holds. If p is an eigenvalue of P, — Py, with eigenvector y, then by (1.8) p* is
an eigenvalue of H(Z, W) with eigenvector Zy = 0. On the other hand, if u*is
an eigenvalue of H(Z, W) with eigenvector v = Zy,, then for all y in the span
of y,and L} = {x: Zx = 0) we have HZy — y2Zy = 0. Hence by (1.8) ZKy =0,
. where K=(Z"Z —WHW)? - 42I. This shows that K maps the n+1-
dimensional subspace span(y,, Lz ) into L3 .

Hence K is singular, and p or — g is an eigenvalue of P, — Py, This
implies (1.6).

To prove (1.7), we use the fact that

2d¥(Z,W)=||P,— Py|=tr(ZHZ - WHW)?
=tr (ZHZZHZ + WHWWHW — ZHZWHW — WHWZYZ)
=tr(ZZ7)+tr(WWH) - 2tr (ZWHWZH)
=2(n—~tr ZWHWZH),

On the other hand | H(Z,W)'/?||2 = tr H(Z,W)=n — tr ZWHWZ". o

Note that it might be easier to calculate dy ((Z,W) via H(Z,W), as
HeC, , while P, — Py, €C, ,.. It should also be noted that another proof

of (1.6) is possible by using Theorem 6.34, p. 56 in [5] and observing that
WH(Z, W )lig = (I — P)Py, i3 = (I — Py)P,||2.
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For later use we derive

ProposiTiON 14. Let Z=(A,B), W=(C,D) be two regular pairs,
(v, 8) an eigenvalue of W such that |y|2+|8|2=1, and x with |x||=1
corresponding eigenvector. Then

18Ax — yBxl| < do( Z,W)-||Z]],. (1.9)

Proof. For convenience we assume ZZH=WW?H =1. Then from
0Cx ~ yDx = 0 we infer

8Ax — yBx = 8(A - ZWHC)x — y(B- ZWHD)x

- (a-zwiic, B-zwiD)| %)= (z-zwnw)( 2%,
= Z(P, - PW)( _‘Sf,x)

and hence (1.9).
Finally we shall need

Prorosition 15. For A,C€C,, and r>0 let Z, =(A,rl),
W, =(C, 1I). Then

lim rd(Z,,W,)=llA-C|;, i=2F. (1.10)
Proof. By explicit calculation one gets
~1 -1 _ 0 AH - CH
im (2(2,20) "'z, - wAwwn) W)= (00 M
r—oo
[ |

(1.10) follows now from (0.3), (0.4), and (0.5).

The following result helps to clarify the relation between the metri
and the spectral norm || ||z-

cd,
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ProrosiTioN 1.6.  For regular pairs Z and W

dy(Z,W)=min{||(22¥) V*Z-TW|,. T€C, ,}- (1.11)

Proof. We may assume ZZ" = I. It is well known (see e.g. [5], [8]) that

dz(Z:W)= |1Pz — Pwll,

=max| max min ||x ~-y|, max min ||x —y|}].
x€L; yELy vELyx€l;
hxli =1 flyll =1

Using the fact that there exists a unitary transformation U mapping L  onto
Ly, and Ly, onto L,, we see that both maxmin expressions above coincide
and hence

do(Z,W)= max min ||x — y||
*xELz y€ly
flxll=1

= max min ||Z7z — WTw||.
ze€C, we(C,
llz|t =1

Specifying w = Tz, we have do(Z, W) < ||ZT — WTT||, and

dy(Z,W)<inf(|Z - TW|,, T €C, ,). (1.12)

On the other hand, as {(x € C,,, ||x|| = 1) > (Z¥y,y € C,, |ly|| = 1}»

|24z -wH(wwH) " 'w], > max ({242 - waewwH) = w | z#y]

= 12" - WH(WWH) " IwzH)|, = | Z — TW 2
where T, = ZWH#(WW )1, This together with (1.12) shows (1.11). L
In particular,
452, W) <|(22") "z - W), < (Z2") A2 - Wl

(1.13)
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2. THE BAUER-FIKE THEOREM

TueoreMm 2.1. Let Z = (A, B) be a diagonalizable pair, and
SAT = diag(a,)=A, SBT =diag(B,)=2, (2.1)
with §,T € C, ,, nonsingular. Let W be a regular pair. Then

Sz(W) <|IT Y ) TNdo( Z,W). (2.2)

Proof. We may assume ZZ"=1 and (y,8) an eigenvalue of W,
|¥)% +|8|2 = 1. Then according to Proposition 1.4 for the normalized eigenvec-
tor x of W corresponding to (v, 8), the inequality

|8Ax — yBxl| <do(Z,W) (2.3)
holds. On the other hand, from (2.1) and ZZ" = 1, one has I = AAZ + EB" =
STWAT-IT-HAH 4 QT-1T-HQH¥)s~# and hence y HSS y =
yH[A(THT)IAH + Q(THT) Q¥ )y < (THT) Yoy "(AA" + Q2 )y for all
yelC, or

gH(SSH) "My > TN 9 (AN + 02) Ty, (24)
Now
(8Ax — yBx)"(8Ax — yBx)
= (T %)7(8A — y2)"S7H5 " 1(5A - y)T s
> T YE3(T %) (8A — v2) (8 — v@)(AAT +0Q%) - 71

Iaai - Yﬁilz

> T3 AT i s

> T Y17 21T 15 2mind*((8, ), (@, B,))-

This together with (2.3) gives (2.2).
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In the case of a normal pair Z, the matrix T in (2.1) can be chosen as
unitary (see Theorem 1.2); hence we get at once

TueoreM 2.2. Let Z=(A, B) be a normal pair and W a regular pair.
Then

S, (W)<dy(Z,W). (2.5)

Theorem 2.1 can also be applied to the definite generalized eigenvalue
problem (see [10], {13], [14]): We call Z = (A, B) a definite pair if A, B are
Hermitian and

c(A, B) = min{|x#( A + iB)xl:||x| =1} > 0. (2.6)

Here the following holds:

THEorREM 2.3. Let Z =(A, B) be a definite pair and W a regular pair.
Then

S(W) < ;J‘AL]';—)dZ(Z,W). (2.7)

Proof. According to [10, Corollary 2.3] there exists a nonsingular matrix
Q such that

QHAQ = A = diag(«,), QHBQ = = diag(8,) (2.8)
and o} +B82=1,i=1,...,n. From (2.6) and (2.8) we get

H,

' xfA+iQ)x]| x"O"(A +iB)Ox
QN Ox st || zHQRQr |7 «(4.B).
and hence
IQx® _ 1 |x"(A+iQ)x
lx|> (A, B) xHy ’
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which implies
101l <c(A, B) V2 (2.9)
Furthermore, from (2.8) and A2 + Q2 =1,
I=0Q%(AQQ"A + BQQ"B)Q,
Q~10™! = AQQ"A + BQQ"B,

and hence

107113 < IQUZNA% + B2, < o(A, B) " iZ|i2. (2.10)

(2.9), (2.10), and (2.2) yield now (2.7). ]

Let us remark that in [10] and [14] bounds for v(Z,W) are derived,
assuming that W is a definite pair, too. It is therefore not possible to compare
the two results, even if one uses (1.13).

3. THE HENRICI THEOREM

For easy quotation we formulate Proposition 3.1, the proof of which
follows exactly the proof of Henrici’s Theorem 0.2 in [3] and is therefore

omitted.

Prorosition 3.1. Let T=A+ M be a nonsingular upper triangular
matrix € C_ _ with diagonal A and strictly upper triangular part M. Let

n,n

m=||M|l, =0 and ||T"Y; <r. Then

_m (3.1)

whereg,,istheinverseﬁmcﬁonofx+x2+ -+ 2" forx 20

As a measure for the departure of a regular matrix pair Z=(A, B) from
normality we introduce the following function:

m:C, 5, » R, ={xER, x>0}.
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Let us denote by 91, the set of all matrix pairs (T, U) such that

T is nonsingular, U is unitary, (3.2a)
TAU and TBU are upper triangular, (3.2b)
(TAU), " +|(TBU) =1, i=1,...,n. (3.2¢)

It has been shown in [7] that 9, =@ . For (T,U)€ M, define

w(T,U)=|(TAU - diag(TAU), TBU — diag(TBU)) ..

Here we use the notation diag(A) for the diagonal matrix formed from the
diagonal elements of A. We call

m(Z)=min{p(T,U):(T,U)eMN,) (3:3)

the departure of Z from normality. This is justified, because one can show by
using compactness arguments, that there exists (T, U,) € 9, such that

W(T, ) <w(T,U)  V(T,U)eM,.
It is obvious from (3.2) that m(Z) depends only on L, and that m(Z)= 0 if

and only if Z is a normal pair.
We are now able to formulate the analogue of Henrici’s Theorem 0.2:

TueoremM 3.1.  Let Z,W be regular pairs, m(Z) the departure of Z from
normality, and m(Z)= 0. Then

S,(W)< gn!(ly) [1+m(Z)]dy(Z, W), y= [1+m(g§fd)2(z,w)'

(3.4)

Proof. By eventually multiplying Z= (A, B) from the left by a suitable
n X n matrix, which doesn’t affect 5,(W), m(Z), and y, we may assume

A=(D,+M,)U, B=(Dyz+Mg)U, (3.5)

U umtary, DA = dia.g(a,-), DB = dlag( Bi)a lDA‘z +|DB|2 — I, MA and MB Stl'lCtly
apper gular, and |(M,, My)||ls = m(Z). For an eigenvalue (v, 8) of W,
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fy[? +18|% = 1, consider
H=38(D,+ M)~ v(Dy+ My).

Then HU = A - yB. Obviously it is only necessary to consider the case that
(7,9) is not an eigenvalue of Z. Then H ! exists and ||H™![|; ! = IKHU) Y51

=||18A — yB)!||3! < ||8Ax — yBx|| for the normalized eigenvector x of W

corresponding to (v, 8). Using Proposition 1.4, we get

NH izt <1I(A, B)llpdo(Z, W) < [II( Dy, Dy )llip +II(My, Mp)lig] do(Z,W)
=[1+m(Z)]dy(Z,W). (3.6)

Applying now Proposition 3.1 to H, we get

injsa, — y8;| <« —+—, 3.7
nunlﬁa, YB:’ < gn(p'/r) ( )

where p = ||6M, — YM;|l, < m(Z), r = (14 m(Z))d4(Z,W). Observing that
the («;, B,) are the normalized eigenvalues of Z, we get from (3.7) the desired
result (3.4). |

It is well known (see [3]) that the right-hand side of (3.1) tends to r if m
tends to zero. Hence we get Theorem 2.2 from (3.4) for m(Z) - 0.

4. THE HOFFMAN-WIELANDT THEOREM

THEOREM 4.1. Let Z,W be two normal pairs with eigenvalues (e, B;)
and (v,,8,), i = 1,...,n, respectively. There exists a permutation = of (1,...,n}

such that

n 1/2
U(Z»W)é( ): 02((0‘.',18.'): (Yﬂ(i)’ 81(.')))) < dF(Z,W). (4.1)

i=1
Proof. Using the notation Z=(A, B), W=(C, D),

SAU, = A = diag(a,),  SBU =R=diag(B), AAT+QQF=1I

TCU, = T =diag(y,), TDU; =4 =diag(8), TTH+AM"=1

IR o ]
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where S, T nonsingular, U,, U, unitary, we get after some manipulations

P, - P, =ZH(ZZH) 'z - wH(WwWH)'w

z(Ul 0)_(1\”1\ A"sz)

0 U/\Q"A QHg

_(V 0 (r"r I‘HA)(V" 0 )](UIH 0 )

0 VAT AA VO VH/\O uf
=U(A-VIVH)TH,  where V=UFU,, (4.2)

e.g.

- - H H
U=(U 0), A=(AA AQ), otc.
0 U QHA  QHQ

Hence, as U is unitary,

2d3(Z,W)=||P; — Py |2 =||A - VTVH2

= te(ARH + VETHYH — G TVHRY - RUTHTH) = (V).
(4.3)

Here we remark that for the case V = P = permutation matrix we have, after
some calculations,

2

A

flP)=|A - PTPH)2 =

‘( ABA — PTTHTP  AHQ - PTAI‘"P)
QHA — PTAHTP  QHQ — PTAYAP

F
2

=

k4

a8 — 'Y«(i)a—w(n B.E. = au'(i)a—n(i)

im1l

(ai&", Yo Yy B — 7#(:')8#("))

=2 Z Iaiarr(i) - B."Ynmlz
i=1

=2 E pz((ai’ :Bi)’ (YW(.'); 8,,(,-)))- (4'4)

i=1
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Here 7(i) is defined by P via Pfdiag(g)P = diag(t,,,)). It is easy to see that
the diagonal entries of (A — VIVH)YAY —VI'#VH) depend linearly on the
nmnbex:s [0/%, 4,k =1,...,n, where V= (0,)- Defining W= (D) by 1, =
|v4]%, W is a bistochastic matrix and we have

fV)=1W) (4.5)

with a linear functional I. As the bistochastic matrices form a convex
polyhedron the vertices of which are the permutation matrices, there exists a
permutation matrix P such that {(W)> [(P). Hence

2d2(Z,W)=f(V)=U(W)=I(P)= f(P).

Using (4.4) we get the second inequality in (4.1). As the first one is evident,
the proof is completed. ]

5. FINAL REMARKS

Despite of the great formal similarity, the “classical” Theorems 0.1, 0.2
and 0.3 are not special cases of the corresponding results for the generalized
eigenvalue problem, namely Theorems 2.1, 3.1, and 4.1. It is, however,
possible to derive the former theorems from the letter ones by a limiting

procedure. .
We treat first Theorem 0.1. If A is diagonalizable, T™'AT = A = diag(},),

then the matrix pair A, =(A,rl) is diagonalizable, too, with eigenvalues
(A, 7). If u is an eigenvalue of C, then (g, r) is an eigenvalue of C, = (C, rI).
From (2.2) we get

rA;, -1
Al +1r 2 Y2 +ir)?

4"T||2||T_l||2d2(AvQ)- (5.1)

min
i

Multiplying (5.1) by r, using Proposition 1.5 and considering r — oo gives

min|A, — p| < |4 = ClllITlIlT™ iz

i.e. Theorem 0.1.
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Similarly we get Theorem 0.2 from Theorem 3.1. Here we have to use the
fact that if A is the departure from normality of the matrix A € C, .. then

m(A,rI)g%.

Using this inequality in (3.4) leads to Theorem 0.2.
When deriving the classical Hoffman-Wielandt Theorem 0.3 from (4.1),

one has to use the fact that there is a fixed permutation 7 and a sequence
{r;} = 0 such that

}E Pz((’\ss 'j)’ (Paciy» ’1)) <d}{ A,},C,’).

i=1

Again, multiplying by r, considering j— oo, and using Proposition 1.5 for the
Euclidean norm gives Theorem 0.3.

It should be mentioned that this limiting procedure was used previously
by Stewart [10].
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